मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The probability distribution of X is as follows: x 0 1 2 3 4 P[X = x] 0.1 k 2k 2k k Find k P[X < 2] P[X ≥ 3] P[1 ≤ X < 4] P(2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability distribution of X is as follows:

x 0 1 2 3 4
P[X = x] 0.1 k 2k 2k k

Find

  1. k
  2. P[X < 2]
  3. P[X ≥ 3]
  4. P[1 ≤ X < 4]
  5. P(2)
बेरीज

उत्तर

a. The table gives a probability distribution and therefore P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3] + P[X = 4] = 1

i.e., 0.1 + k + 2k + 2k + k = 1

i.e., 6k = 0.9

∴ k = 0.15

k = 0.15

b. P[X < 2] = P[X = 0] + P[X = 1] = 0.1 + k

= 0.1 + 0.15

= 0.25

c. P[X ≥ 3] = P[X = 3] + P[X = 4] = 2k + k

= 3k

= 3(0.15)

= 0.45

d. P[1 ≤ X < 4] = P[X = 1] + P[X = 2] + P[X = 3]

= k + 2k + 2k

= 5k

= 5(0.15)

= 0.75

e. P(2) = P[X ≤ 2] = P[X = 0] + P[X = 1] + P[X = 2]

= 0.1 + k + 2k

= 0.1 + 3k

= 0.1 + 0.45

= 0.55

shaalaa.com
Probability Distribution of Discrete Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्‍न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

Find expected value and variance of X for the following p.m.f.

x -2 -1 0 1 2
P(X) 0.2 0.3 0.1 0.15 0.25

Find the mean number of heads in three tosses of a fair coin.


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


The following is the p.d.f. of r.v. X :

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise

P ( 1 < x < 2 )


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Find the probability distribution of number of number of tails in three tosses of a coin


Find the probability distribution of number of heads in four tosses of a coin


Find expected value and variance of X, the number on the uppermost face of a fair die.


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______


State whether the following is True or False :

If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.


State whether the following is True or False :

x – 2 – 1 1 2
P(X = x) 0.2 0.3 0.15 0.25 0.1

If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

k = `square`


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


The value of discrete r.v. is generally obtained by counting.


The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×