Advertisements
Advertisements
प्रश्न
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
1 |
P (X ≤ 3/ X > 0)
उत्तर
(X ≤ 3) ∩ (X > 0)
= {-3, -2, -1, 0, 1, 2, 3} ∩ {1, 2, 3, 4}
= {1, 2, 3}
∴ P[(X ≤ 3) ∩ ( X > 0)]
= P(X = 1)+ P(X = 2)+ P(X = 3)
∴ P[(X ≤ 3) / ( X > 0)]
= `(P[(X ≤ 3) ∩ ( X > 0)])/(P(X > 0))`
= `(P(X = 1) + P(X = 2) + P(X=3))/(P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4))`
= `(0.1 + 0.1 + 0.05)/(0.1 + 0.1 + 0.05 + 0.1)`
=`0.25/0.35`
= `5/7`
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | − 0.1 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.1 | 0.6 | 0.3 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
Find the mean number of heads in three tosses of a fair coin.
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
P(x > 2)
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise
Verify whether f (x) is p.d.f. of r.v. X.
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
The person on the high protein diet is interested gain of weight in a week.
The following is the c.d.f. of r.v. X:
X | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).
Choose the correct alternative :
If X ∼ B`(20, 1/10)` then E(X) = _______
Fill in the blank :
If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) | `(1)/(32)` | `(5)/(32)` | `(10)/(32)` | `(10)/(32)` | `(5)/(32)` | `(1)/(32)` |
If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______
If a d.r.v. X has the following probability distribution:
X | –2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P(X = –1) is ______
Find mean for the following probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | `1/6` | `1/3` | `1/3` | `1/6` |
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
The values of discrete r.v. are generally obtained by ______
E(x) is considered to be ______ of the probability distribution of x.
Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`
E(X) = `square + square + square = square`
Var(X) = `"E"("X"^2) - {"E"("X")}^2`
= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`
= `square - square`
= `square`
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)