मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by f (x) otherwise (i) Verify whether f (x) is p.d.f. of r.v. X. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise

 Verify whether f (x) is p.d.f. of r.v. X.

बेरीज

उत्तर

f (x) = `x^2/3 ≥0,` for -1 < x < 2

Also, ` int_(-∞)^∞ f (x) dx`

=`int_(-∞)^-1 f (x) dx`+ `int_(-1)^2 f (x) dx`  +`int_(2)^∞f (x) dx` 

= 0+`int_(-1)^2 f (x^2/3) dx` + 0 = `1/3[x^3/3]_-1^2`

= `1/3[8/3 - ((-1))/3] = 1/3[9/3] = 1`

∴ f (x) is the p.d.f. of X.

shaalaa.com
Probability Distribution of Discrete Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Probability Distributions - Exercise 7.2 [पृष्ठ २३९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 7 Probability Distributions
Exercise 7.2 | Q 3.1 | पृष्ठ २३९

संबंधित प्रश्‍न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

A random variable X has the following probability distribution:

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine:

  1. k
  2. P(X < 3)
  3. P( X > 4)

It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that waiting time is between 1 and 3.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that the waiting time is more than 4 minutes.


Choose the correct option from the given alternative :

P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)

If P (X < a) = P (X > a), then a =


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

The person on the high protein diet is interested gain of weight in a week.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is positive


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Find expected value and variance of X, the number on the uppermost face of a fair die.


70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).


Find k if the following function represents the p. d. f. of a r. v. X.

f(x) = `{(kx,  "for"  0 < x < 2),(0,  "otherwise."):}`

Also find `"P"[1/4 < "X" < 1/2]`


Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)


F(x) is c.d.f. of discrete r.v. X whose distribution is

Xi – 2 – 1 0 1 2
Pi 0.2 0.3 0.15 0.25 0.1

Then F(–  3) = _______ .


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


If F(x) is distribution function of discrete r.v.X with p.m.f. P(x) = `k^4C_x` for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(–1) = _______


Fill in the blank :

E(x) is considered to be _______ of the probability distribution of x.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

X 0 1 2 3 4 5
P(X = x) `(1)/(32)` `(5)/(32)` `(10)/(32)` `(10)/(32)` `(5)/(32)` `(1)/(32)`

Solve the following problem :

Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).


Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


If a d.r.v. X has the following probability distribution:

X 1 2 3 4 5 6 7
P(X = x) k 2k 2k 3k k2 2k2 7k2 + k

then k = ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

E(x) is considered to be ______ of the probability distribution of x.


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

The probability distribution of X is as follows:

x 0 1 2 3 4
P[X = x] 0.1 k 2k 2k k

Find

  1. k
  2. P[X < 2]
  3. P[X ≥ 3]
  4. P[1 ≤ X < 4]
  5. P(2)

Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×