Advertisements
Advertisements
प्रश्न
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for" x = 1"," 2"," 3","),(0",", "otherwise"):}` then E(X) = ______
पर्याय
`343/297`
`294/251`
`297/294`
`294/297`
उत्तर
`bb(294/251)`
Explanation:
P(x = 1) + P (x = 2) + P (x = 3) = 1
`"C"/1+"C"/8+"C"/27` = 1
`(216"C"+27"C"+8"C")/216` = 1
E (X) = Σxi Pi
= 1 × P (x = 1) + 2 × P (x = 2) + 3 × P (x = 3)
= `1xx"C"/1+2xx"C"/8+3xx"C"/27`
= `"C"/1+"C"/4+"C"/9`
= `(36"C"+9"C"+4"C")/36`
= `(49"C")/36`
= `49/36xx216/251`
= `(49xx6)/251`
= `294/251`
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.4 | 0.4 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.1 | 0.6 | 0.3 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer
Z | 3 | 2 | 1 | 0 | −1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0 | 0.05 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
Y | −1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2 /3` , for –1 < x < 2 and = 0 otherwise
Verify whether f (x) is p.d.f. of r.v. X.
Find k if the following function represent p.d.f. of r.v. X
f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.
Find k, if the following function represents p.d.f. of r.v. X.
f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.
Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.
Choose the correct option from the given alternative :
P.d.f. of a.c.r.v X is f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere)
If P (X < a) = P (X > a), then a =
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative:
If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
The person on the high protein diet is interested gain of weight in a week.
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
Solve the following problem :
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.
The following is the c.d.f. of r.v. X:
X | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)
Find the probability distribution of number of number of tails in three tosses of a coin
Find the probability distribution of number of heads in four tosses of a coin
Find expected value and variance of X, the number on the uppermost face of a fair die.
70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).
Choose the correct alternative :
X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.
Fill in the blank :
If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 | ... | n |
P(X = x) | `(1)/"n"` | `(1)/"n"` | `(1)/"n"` | ... | `(1)/"n"` |
Solve the following problem :
Let the p. m. f. of the r. v. X be
`"P"(x) = {((3 - x)/(10)", ","for" x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).
Solve the following problem :
Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.
If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______
The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for" x = 0"," 1"," 2"," 3"," 4"," 5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for" x = 1"," 2"," 3"," .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
Choose the correct alternative:
f(x) is c.d.f. of discete r.v. X whose distribution is
xi | – 2 | – 1 | 0 | 1 | 2 |
pi | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
then F(– 3) = ______
If p.m.f. of r.v. X is given below.
x | 0 | 1 | 2 |
P(x) | q2 | 2pq | p2 |
then Var(x) = ______
The values of discrete r.v. are generally obtained by ______
E(x) is considered to be ______ of the probability distribution of x.
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
k = `square`
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≥ 3) = `square - square - square = square`
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)