Advertisements
Advertisements
प्रश्न
Solve the following problem :
Let the p. m. f. of the r. v. X be
`"P"(x) = {((3 - x)/(10)", ","for" x = -1", "0", "1", "2.),(0,"otherwise".):}`
Calculate E(X) and Var(X).
उत्तर १
P(X)=`(3-x) /10`
X takes values -1, 0, 1, 2
P(X = -1)= P(-1) = `(3+1) /10 =4/ 10`
P(X = 0)= P(0) = `(3-0) /10 =3/ 10`
P(X = 1)= P(1) = `(3-1) /10 =2/ 10`
P(X = 2)= P(2) = `(3-2) /10 =1/ 10`
We construct the following table to calculate the mean and variance of X :
xi | P (xi) | xi P (xi) | xi2 P (xi) |
-1 | `4/10` | -`4/10` | `4/10` |
0 | `3/10` | 0 | 0 |
1 | `2/ 10` | `2/10` | `2/10` |
2 | `1/10` | `2/10` | `4/10` |
Total | 1 | 0 | 1 |
From the table
∑xi P(xi)0 and ∑xi2 ·P(xi)= 1
E(X) = xi P(xi) = 0
Var (X) = ∑xi2 · P(xi) - [E(X)]2
= 1 - 0 = 1
Hence, E(X) = 0, Var (X) = 1.
उत्तर २
E(X) = `sum_("i" = 1)^4x_"i""P"(x_"i")`
= `-1 xx ((3 - (-1))/10) + 0 xx ((3 - 0)/10) + 1 xx ((3 - 1)/10) + 2 xx ((3 - 2)/10)`
= `(-4 + 0 + 2 + 2)/10`
= 0
E(X2) = `sum_("i" = 1)^4x_"i"^2"P"(x_"i")`
= `(-1)^2 xx 4/10 + (0)^2 xx 3/10 + (1)^2 xx 2/10 + (2)^2 xx 1/10`
= `(4 + 0 + 2 + 4)/10`
= 1
Var(X) = E(X2) – [E(X)]2
= 1 – (0)2
= 1
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | − 0.1 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.1 | 0.6 | 0.3 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer
Z | 3 | 2 | 1 | 0 | −1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0 | 0.05 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | -1 | -2 |
P(X) | 0.3 | 0.4 | 0.3 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find P (x < 1·5)
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Find k if the following function represent p.d.f. of r.v. X
f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.
If a r.v. X has p.d.f.,
f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative :
If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
Choose the correct option from the given alternative:
Find expected value of and variance of X for the following p.m.f.
X | -2 | -1 | 0 | 1 | 2 |
P(x) | 0.3 | 0.3 | 0.1 | 0.05 | 0.25 |
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is positive
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
1 |
P (X ≤ 3/ X > 0)
Find the probability distribution of number of number of tails in three tosses of a coin
Find the probability distribution of number of heads in four tosses of a coin
70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).
Given that X ~ B(n, p), if n = 10 and p = 0.4, find E(X) and Var(X)
Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).
Choose the correct alternative :
X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
Fill in the blank :
E(x) is considered to be _______ of the probability distribution of x.
State whether the following is True or False :
x | – 2 | – 1 | 0 | 1 | 2 |
P(X = x) | 0.2 | 0.3 | 0.15 | 0.25 | 0.1 |
If F(x) is c.d.f. of discrete r.v. X then F(–3) = 0
State whether the following is True or False :
If p.m.f. of discrete r.v. X is
x | 0 | 1 | 2 |
P(X = x) | q2 | 2pq | p2 |
then E(x) = 2p.
If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The following is the c.d.f of a r.v.X.
x | – 3 | – 2 | – 1 | 0 | 1 | 2 | 3 | 4 |
F (x) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 | 1 |
Find the probability distribution of X and P(–1 ≤ X ≤ 2).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | – 1 | 0 | 1 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
X | 0 | 1 | 2 | 3 | 4 | 5 |
P(X = x) | `(1)/(32)` | `(5)/(32)` | `(10)/(32)` | `(10)/(32)` | `(5)/(32)` | `(1)/(32)` |
If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______
If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for" x = 1"," 2"," 3","),(0",", "otherwise"):}` then E(X) = ______
If a d.r.v. X has the following probability distribution:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X = x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
then k = ______
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.
If X is discrete random variable takes the values x1, x2, x3, … xn, then `sum_("i" = 1)^"n" "P"(x_"i")` = ______
The probability distribution of a discrete r.v.X is as follows.
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Complete the following activity.
Solution: Since `sum"p"_"i"` = 1
P(X ≤ 4) = `square + square + square + square = square`
The following function represents the p.d.f of a.r.v. X
f(x) = `{{:((kx;, "for" 0 < x < 2, "then the value of K is ")),((0;, "otherwise")):}` ______
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
The probability distribution of X is as follows:
x | 0 | 1 | 2 | 3 | 4 |
P[X = x] | 0.1 | k | 2k | 2k | k |
Find
- k
- P[X < 2]
- P[X ≥ 3]
- P[1 ≤ X < 4]
- P(2)
The value of discrete r.v. is generally obtained by counting.
The p.m.f. of a random variable X is as follows:
P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)