मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = nn+12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If r.v. X assumes values 1, 2, 3, ……. n with equal probabilities then E(X) = `("n" + 1)/(2)`

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

X 1 2 3 .... n
P(X) `(1)/"n"` `(1)/"n"` `(1)/"n"`   `(1)/"n"`

E(X) = `sumx_"i"*"P"(x_"i")`

= `1(1/"n") + 2(1/"n") + 3(1/"n") + .... + "n"(1/"n")`

= `(1)/"n" (1 + 2 + 3 + .... +  "n")`

= `(1)/"n". ("n"("n" + 1))/(2)`

= `("n" + 1)/(2)`.

shaalaa.com
Probability Distribution of Discrete Random Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Miscellaneous Exercise 8 [पृष्ठ १५४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Miscellaneous Exercise 8 | Q 3.08 | पृष्ठ १५४

संबंधित प्रश्‍न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.1 0.6 0.3

Find the mean number of heads in three tosses of a fair coin.


Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.


Solve the following problem :

A fair coin is tossed 4 times. Let X denote the number of heads obtained. Identify the probability distribution of X and state the formula for p. m. f. of X.


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find the probability distribution of number of number of tails in three tosses of a coin


70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).


Given that X ~ B(n,p), if n = 10, E(X) = 8, find Var(X).


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If a d.r.v. X has the following probability distribution:

X –2 –1 0 1 2 3
P(X = x) 0.1 k 0.2 2k 0.3 k

then P(X = –1) is ______


Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`

If X is discrete random variable takes the values x1, x2, x3, … xn, then `sum_("i" = 1)^"n" "P"(x_"i")` = ______


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


The p.m.f. of a random variable X is as follows:

P (X = 0) = 5k2, P(X = 1) = 1 – 4k, P(X = 2) = 1 – 2k and P(X = x) = 0 for any other value of X. Find k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×