Advertisements
Advertisements
प्रश्न
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______
पर्याय
`(1)/(3)`
`(4)/(3)`
`(2)/(3)`
1
उत्तर
X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = `bbunderline((4)/(3))`
Explanation:
Since E(X) = `int_(-oo)^(oo) xf(x)*dx`
Since f(x) is a p.d.f. of r.v.X
∴ `int_0^4 "k"/sqrt(x)*dx` = 1
∴ `"k" [2sqrt(x)]_0^4` = 1
∴ `2"k"[sqrt(x)]_0^4` = 1
∴ `2"k"[sqrt(4) - sqrt(0)]` = 1
∴ 2k [2 – 0] = 1
∴ 4k = 1
∴ k = `(1)/(4)`
∴ E(X) = `int_0^4x((1/4)/sqrt(x))*dx`
= `(1)/(4) int_0^4 sqrt(x)*dx`
= `(1)/(4)[(x^(3/2))/(3/2)]_0^4`
= `(1)/(4) xx (2)/(3)[x^(3/2)]_0^4`
= `(1)/(6)[(4)^(3/2) - (0)^(3/2)]`
= `(1)/(6)[8 - 0]`
= `(8)/(6)`
∴ E(X) = `(4)/(3)`.
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.4 | 0.4 | 0.2 |
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P(X) | 0.1 | 0.6 | 0.3 |
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine:
- k
- P(X < 3)
- P( X > 4)
Find expected value and variance of X for the following p.m.f.
x | -2 | -1 | 0 | 1 | 2 |
P(X) | 0.2 | 0.3 | 0.1 | 0.15 | 0.25 |
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise
Find probability that X is negative
Find k if the following function represent p.d.f. of r.v. X
f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.
If a r.v. X has p.d.f.,
f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
Choose the correct option from the given alternative:
If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =
Choose the correct option from the given alternative:
If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Find the probability distribution of number of heads in four tosses of a coin
70% of the members favour and 30% oppose a proposal in a meeting. The random variable X takes the value 0 if a member opposes the proposal and the value 1 if a member is in favour. Find E(X) and Var(X).
Choose the correct alternative :
If X ∼ B`(20, 1/10)` then E(X) = _______
If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)` for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).
Solve the following problem :
Find the expected value and variance of the r. v. X if its probability distribution is as follows.
x | 1 | 2 | 3 |
P(X = x) | `(1)/(5)` | `(2)/(5)` | `(2)/(5)` |
The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for" x = 0"," 1"," 2"," 3"," 4"," 5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then
Find the expected value and variance of r.v. X whose p.m.f. is given below.
X | 1 | 2 | 3 |
P(X = x) | `1/5` | `2/5` | `2/5` |