English

Find expected value and variance of X, the number on the uppermost face of a fair die. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find expected value and variance of X, the number on the uppermost face of a fair die.

Sum

Solution

Let X denote the number on uppermost face.
∴ Possible values of X are 1, 2, 3, 4, 5, 6.
Each outcome is equiprobable.
∴ P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = P(X = 6) = `(1)/(6)`

∴ Expected value of X
= E(X)

= \[\sum\limits_{i=1}^{6} x_i.\text{P}(x_i)\]

= `1 xx (1)/(6) + 2 xx (1)/(6) + 3 xx (1)/(6) + 4 xx (1)/() + 5 xx (1)/(6) + 6 xx (1)/(6)`

= `(1)/(6)(1 + 2 + 3 + 4 + 5 + 6)`

= `(21)/(6)`

= `(7)/(2)`

E(X2) = \[\sum\limits_{i=1}^{6} x_i^2.\text{P}(x_i)\]

= `1^2 xx (1)/(6) + 2^2 xx (1)/(6) + 3^2 xx (1)/(6) + 4^2 xx (1)/(6) + 5^2 xx (1)/(6) + 6^2 xx (1)/(6)`

= `(1)/(6)(1^2 + 2^ + 3^2 + 4^2 + 5^2 + 6^2)`

= `((6 xx 7 xx 13))/(6 xx 6)`

= `(91)/(6)`

∴ Variance of X
= Var(X)
= E(X2) – [E(X)]2

= `(91)/(6) - (7/2)^2`

= `(35)/(12)`.

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Exercise 8.1 [Page 141]

APPEARS IN

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer

Z 3 2 1 0 −1
P(Z) 0.3 0.2 0.4 0 0.05

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

Find expected value and variance of X for the following p.m.f.

x -2 -1 0 1 2
P(X) 0.2 0.3 0.1 0.15 0.25

The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Find probability that X is negative


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `x^2 /(n (n + 1))`, for x = 1, 2, 3, . . ., n and = 0, otherwise then E (X ) =


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


The following is the c.d.f. of r.v. X:

X −3 −2 −1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9 1

Find p.m.f. of X.
i. P(–1 ≤ X ≤ 2)
ii. P(X ≤ 3 / X > 0).


Solve the following problem :

Find the expected value and variance of the r. v. X if its probability distribution is as follows.

x 1 2 3
P(X = x) `(1)/(5)` `(2)/(5)` `(2)/(5)`

Solve the following problem :

Let X∼B(n,p) If n = 10 and E(X)= 5, find p and Var(X).


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


Find mean for the following probability distribution.

X 0 1 2 3
P(X = x) `1/6` `1/3` `1/3` `1/6`

Find the expected value and variance of r.v. X whose p.m.f. is given below.

X 1 2 3
P(X = x) `1/5` `2/5` `2/5`

The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


If p.m.f. of r.v. X is given below.

x 0 1 2
P(x) q2 2pq p2

then Var(x) = ______


The values of discrete r.v. are generally obtained by ______


Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×