English

A Resistor R is Connected to a Cell Of-emf E and Internal Resistance R. the Potential Difference Across the Resistor R is Found to Be V. State the Relation Between E, V, Rand R. - Physics (Theory)

Advertisements
Advertisements

Question

A resistor R is connected to a cell of-emf e and internal resistance r. The potential difference across the resistor R is found to be V. State the relation between e, V, Rand r.

Solution

e = IR + Ir

Where E is EMF of the cell

V = IR is potential drop across external; resistance R.

Ir is potential drop across internal resistance r.

e = V + Ir

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current in the circuit is 0.5 A, what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?


A storage battery of emf 8.0 V and internal resistance 0.5 Ω is being charged by a 120 V dc supply using a series resistor of 15.5 Ω. What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?


Two identical cells, each of emf E, having negligible internal resistance, are connected in parallel with each other across an external resistance R. What is the current through this resistance?


A cell of emf ‘E’ and internal resistance ‘r’ is connected across a variable resistor ‘R’. Plot a graph showing the variation of terminal potential ‘V’ with resistance R. Predict from the graph the condition under which ‘V’ becomes equal to ‘E’.


Two non-ideal batteries are connected in parallel. Consider the following statements:-

(A) The equivalent emf is smaller than either of the two emfs.

(B) The equivalent internal resistance is smaller than either of the two internal resistances.


The following figure shows an arrangement to measure the emf ε and internal resistance r of a battery. The voltmeter has a very high resistance and the ammeter also has some resistance. The voltmeter reads 1.52 V when the switch S is open. When the switch is closed, the voltmeter reading drops to 1.45 V and the ammeter reads 1.0 A. Find the emf and the internal resistance of the battery.


A battery of emf 100 V and a resistor of resistance 10 kΩ are joined in series. This system is used as a source to supply current to an external resistance R. If R is not greater than 100 Ω, the current through it is constant up to two significant digits.
Find its value. This is the basic principle of a constant-current source.


Do the electrodes in an electrolytic cell have fixed polarity like a battery?


A plate of area 10 cm2 is to be electroplated with copper (density 9000 kg m−3) to a thickness of 10 micrometres on both sides, using a cell of 12 V. Calculate the energy spent by the cell in the process of deposition. If this energy is used to heat 100 g of water, calculate the rise in the temperature of the water. ECE of copper = 3 × 10−7 kg C−1and specific heat capacity of water = 4200 J kg−1.


An energy source will supply a constant current into the load if its internal resistance is ______.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×