Advertisements
Advertisements
Question
एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.
Solution
समजा, α = 5 आणि β = -4
α + β = 5 – 4 = 1
आणि α × β = 5 × (-4) = -20
∴ अपेक्षित वर्गसमीकरण
x2 – (α + β)x + αβ = 0
∴ x2 – (1) x + (– 20) = 0
∴ x2 – x – 20 = 0
APPEARS IN
RELATED QUESTIONS
वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.
2m2 - 5m = 0, m = 2, `5/2`
जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?
खालील वर्गसमीकरणाची मुळे लिहा.
(p – 5) (p + 3) = 0
जर a = 1, b = 4, c = -5 तर b2 - 4ac ची किंमत काढा.
जर b2 - 4ac > 0 व b2 - 4ac < 0 असेल, तर या प्रत्येक बाबतीत वर्गसमीकरणाच्या मुळाचे स्वरूप लिहा.
x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.
कृती: x = (______) असताना
डा. बा.
= 12 + 4 (______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= उ. बा.
म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.
x2 – kx – 15 = 0 या वर्गसमीकरणाचे एक मूळ –3 असेल, तर k ची किंमत काढा.
2m2 - 5m = 0 या वर्गसमीकरणाचे मूळ 2 आहे किंवा नाही ते ठरवा.
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती:
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.
∴ x = `square` वरील समीकरणात ठेवू.
∴ k`(square)^2 - 10 xx square + 3 = 0`
∴ `square` - 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
kx2 − 7x + 12 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे, तर k = ______.