Advertisements
Advertisements
Question
kx2 − 7x + 12 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे, तर k = ______.
Options
1
−1
3
−3
Solution
kx2 − 7x + 12 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे, तर k = 1.
स्पष्टीकरण:
दिलेले द्विघात समीकरण kx2 − 7x + 12 = 0
∴ x = 3 वरील वर्गसमीकरणात ठेवू.
∴ k(3)2 − 7(3) + 12 = 0
∴ 9k − 21 + 12 = 0
∴ 9k − 9 = 0
∴ 9k = 9
∴ k = `9/9`
∴ k = 1
APPEARS IN
RELATED QUESTIONS
जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?
5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `(-7)/5` असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
उकल:
5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `square` आहे.
∴ m = `square` वरील वर्गसमीकरणात ठेवू.
∴ `5 xx square^2 + 2 xx square + k = 0`
∴ `square + square` + k = 0
∴ `square` + k = 0
∴ k = `square`
x2 + kx + k = 0 ची मुळे वास्तव व समान असतील, तर k ची किंमत खालीलपैकी कोणती?
`sqrt5m^2 - sqrt5m + sqrt5 = 0` ला खालीलपैकी कोणते विधान लागू पडते?
खालील वर्गसमीकरणाची मुळे लिहा.
(p – 5) (p + 3) = 0
x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.
कृती: x = (______) असताना
डा. बा.
= 12 + 4 (______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= उ. बा.
म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.
x2 – kx – 15 = 0 या वर्गसमीकरणाचे एक मूळ –3 असेल, तर k ची किंमत काढा.
एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.
असे एक शाब्दिक उदाहरण तयार करा, की त्यापासून मिळणाऱ्या वर्गसमीकरणाचे एक मूळ 5 असेल. समीकरण तयार करून लिहा. (वर्गसमीकरणासाठी तयार करण्यासाठी वय, रुपये, नैसर्गिक संख्या यांसारख्या राशींचा उपयोग करा.) (वरील उदाहरण विद्यार्थ्यांना सोयीसाठी सोडवून दाखवत आहोत. विद्यार्थी वेगळी संख्या घेऊन असेच उदाहरण तयार करून सोडवू शकतात.)
उकल: आपल्याला समीकरणाचे एक मूळ 5 हवे आहे. मग दुसरे मूळ आपण आपल्या मनाने कोणतीही संख्या (धन, ऋण, शून्य) घेऊ शकतो. मग आपण समजा इथे दुसरे मूळ 2 घेतले.
मग आपण खालीलप्रमाणे उदाहरण तयार करू शकतो,
स्मिता ही तिची बहीण मिता पेक्षा 3 वर्षांनी लहान आहे (5 - 2 = 3). दोघींच्या वयांचा गुणाकार 10 आहे (5 × 2 = 10). तर दोघींचे आजचे वय काढा. (शाब्दिक उदाहरण तयार करणे 1 गुण)
मिताचे वय x मानू.
म्हणून, स्मिताचे वय = x - 3 (याकरता 1 गुण)
दिलेल्या अटीनुसार,
x(x – 3) = 10
x2 – 3x – 10 = 0 (समीकरण तयार करणे 1 गुण)
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती:
kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.
∴ x = `square` वरील समीकरणात ठेवू.
∴ k`(square)^2 - 10 xx square + 3 = 0`
∴ `square` - 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`