English

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ -75 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा. - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ -75 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

उकल:

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ आहे.

∴ m = वरील वर्गसमीकरणात ठेवू.

5×2+2×+k=0

+ + k = 0

+ k = 0

∴ k =

Sum

Solution

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ -75 आहे.

∴ m = -75 वरील वर्गसमीकरणात ठेवू.

5×(-75)2+2×-75+k=0

495+-145 + k = 0

∴ 7 + k = 0

∴ k = - 7

shaalaa.com
वर्गसमीकरणाची मुळे (उकली)
  Is there an error in this question or solution?
Chapter 2: वर्गसमीकरणे - सरावसंच 2.1 [Page 34]

APPEARS IN

Balbharati Algebra (Mathematics 1) [Marathi] 10 Standard SSC Maharashtra State Board
Chapter 2 वर्गसमीकरणे
सरावसंच 2.1 | Q 6. | Page 34

RELATED QUESTIONS

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

2m2 - 5m = 0, m = 2, 52


5m2-5m+5=0 ला खालीलपैकी कोणते विधान लागू पडते?


x2 + mx - 5 = 0 या वर्गसमीकरणाचे एक मूळ 2 असेल, तर m ची किंमत खालीलपैकी कोणती?


खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.

खालीलपैकी कोणत्या समीकरणाची मुळे – 3 व – 5 आहे.


खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.

X2 – kX + 27 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत खालीलपैकी कोणती? 


खालील वर्गसमीकरणाची मुळे लिहा.

(p – 5) (p + 3) = 0


x2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.

म्हणून, x = ______ घेऊ.

(–6)2 + k(–6) + 54 = 0

(______) –6k + 54 = 0

–6k + ______ = 0

k = ______ 


x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.

कृती: x = (______) असताना 

डा. बा.

= 12 + 4 (______) – 5 

= 1 + 4 – 5

= (______) – 5

= ______

= उ. बा.

म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.


एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.


kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती:

kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.

 ∴ x = वरील समीकरणात ठेवू.

∴ k()2-10×+3=0

- 30 + 3 = 0

∴ 9k =

∴ k =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.