English

X2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा. कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे. म्हणून, x = ______ घेऊ. (–6)2 + - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

x2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.

म्हणून, x = ______ घेऊ.

(–6)2 + k(–6) + 54 = 0

(______) –6k + 54 = 0

–6k + ______ = 0

k = ______ 

Sum

Solution

x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.

म्हणून, x = -6 घेऊ.

∴ (– 6)2 + k(– 6) + 54 = 0 

36 – 6k + 54 = 0

∴ – 6k + 90 = 0

∴ 6k = 90

∴ k = `90/6` 

∴ k = 15 

shaalaa.com
वर्गसमीकरणाची मुळे (उकली)
  Is there an error in this question or solution?
Chapter 2: वर्गसमीकरणे - Q २ अ)

APPEARS IN

SCERT Maharashtra Algebra (Mathematics 1) [Marathi] 10 Standard SSC
Chapter 2 वर्गसमीकरणे
Q २ अ) | Q ३)

RELATED QUESTIONS

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

x2 + 4x – 5 = 0, x = 1, –1


जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?


5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `(-7)/5` असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

उकल:

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `square` आहे.

∴ m = `square` वरील वर्गसमीकरणात ठेवू.

∴ `5 xx square^2 + 2 xx square + k = 0`

∴ `square + square` + k = 0

∴ `square` + k = 0

∴ k = `square`


x2 + kx + k = 0 ची मुळे वास्तव व समान असतील, तर k ची किंमत खालीलपैकी कोणती?


`sqrt5m^2 - sqrt5m + sqrt5 = 0` ला खालीलपैकी कोणते विधान लागू पडते?


खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.

खालीलपैकी कोणत्या समीकरणाची मुळे – 3 व – 5 आहे.


खालील वर्गसमीकरणाची मुळे लिहा.

(p – 5) (p + 3) = 0


जर a = 1, b = 4, c = -5 तर b2 - 4ac ची किंमत काढा. 


x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.

कृती: x = (______) असताना 

डा. बा.

= 12 + 4 (______) – 5 

= 1 + 4 – 5

= (______) – 5

= ______

= उ. बा.

म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.


एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×