English

2m2 - 5m = 0 या वर्गसमीकरणाचे मूळ 2 आहे किंवा नाही ते ठरवा. - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

2m2 - 5m = 0 या वर्गसमीकरणाचे मूळ 2 आहे किंवा नाही ते ठरवा.

Sum

Solution

2m2 - 5m = 0 ...............(i)

समीकरण (i) च्या डाव्या बाजूला m = 2 ठेवून,

डावी बाजू = 2(2)2 – 5(2)

= 2(4) - 10

= 8 - 10

= -2

∴ डावी बाजू ≠ उजवी बाजू

∴ m = 2 ही दिलेल्या समीकरणाची उकल नाही.

shaalaa.com
वर्गसमीकरणाची मुळे (उकली)
  Is there an error in this question or solution?
2021-2022 (March) Set 1

APPEARS IN

RELATED QUESTIONS

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

2m2 - 5m = 0, m = 2, `5/2`


जर x = 3 हे kx2 - 10x + 3 = 0 या समीकरणाचे एक मूळ असेल, तर k ची किंमत किती?


5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `(-7)/5` असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

उकल:

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `square` आहे.

∴ m = `square` वरील वर्गसमीकरणात ठेवू.

∴ `5 xx square^2 + 2 xx square + k = 0`

∴ `square + square` + k = 0

∴ `square` + k = 0

∴ k = `square`


`sqrt5m^2 - sqrt5m + sqrt5 = 0` ला खालीलपैकी कोणते विधान लागू पडते?


x2 + mx - 5 = 0 या वर्गसमीकरणाचे एक मूळ 2 असेल, तर m ची किंमत खालीलपैकी कोणती?


खालील प्रश्नाच्या उत्तरांचे अचूक पर्याय निवडा.

खालीलपैकी कोणत्या समीकरणाची मुळे – 3 व – 5 आहे.


जर b2 - 4ac > 0 व b2 - 4ac < 0 असेल, तर या प्रत्येक बाबतीत वर्गसमीकरणाच्या मुळाचे स्वरूप लिहा.


एका वर्गसमीकरणाची मुळे 5 व –4 आहेत, तर ते वर्गसमीकरण तयार करा.


असे एक शाब्दिक उदाहरण तयार करा, की त्यापासून मिळणाऱ्या वर्गसमीकरणाचे एक मूळ 5 असेल. समीकरण तयार करून लिहा. (वर्गसमीकरणासाठी तयार करण्यासाठी वय, रुपये, नैसर्गिक संख्या यांसारख्या राशींचा उपयोग करा.) (वरील उदाहरण विद्यार्थ्यांना सोयीसाठी सोडवून दाखवत आहोत. विद्यार्थी वेगळी संख्या घेऊन असेच उदाहरण तयार करून सोडवू शकतात.)

उकल: आपल्याला समीकरणाचे एक मूळ 5 हवे आहे. मग दुसरे मूळ आपण आपल्या मनाने कोणतीही संख्या (धन, ऋण, शून्य) घेऊ शकतो. मग आपण समजा इथे दुसरे मूळ 2 घेतले.

मग आपण खालीलप्रमाणे उदाहरण तयार करू शकतो,
स्मिता ही तिची बहीण मिता पेक्षा 3 वर्षांनी लहान आहे (5 - 2 = 3). दोघींच्या वयांचा गुणाकार 10 आहे (5 × 2 = 10). तर दोघींचे आजचे वय काढा. (शाब्दिक उदाहरण तयार करणे 1 गुण)

मिताचे वय x मानू.

म्हणून, स्मिताचे वय = x - 3 (याकरता 1 गुण)

दिलेल्या अटीनुसार,

x(x – 3) = 10

x2 – 3x – 10 = 0 (समीकरण तयार करणे 1 गुण) 


kx2 − 7x + 12 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे, तर k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×