Advertisements
Advertisements
Question
आकृति में `square` PQRS तथा `square` MNRL आयत है। बिंदु M यह PR का मध्यबिंदु है। तो सिद्ध कीजिए कि
(i) SL = LR, (ii) LN = `1/2` SQ
Solution
(i) `square` LMNR तथा `square` MNRL आयत है।
∴ रेख LM || रेख RN ...(आयत की सम्मुख भुजाएँ)
अर्थात, रेख LM || रेख RQ ...(R-N-Q) ...(i)
रेख RQ || रेख SP ...(आयत की सम्मुख भुजाएँ) ...(ii)
(i) तथा (ii) से,
रेख LM || रेख SP ...(iii)
ΔRSP में,
बिंदु M, रेख PR का मध्यबिंदु है।
रेख LM || रेख SP ...[(iii) से]
∴ बिंदु L, रेख SR का मध्यबिंदु है। ...(मध्यबिंदु प्रमेय का विलोम) ...(iv)
∴ SL = LR
(ii) आयत के विकर्ण सर्वांगसम होते हैं।
∴ SQ = PR ...(v)
तथा LN = MR ...(vi)
अब, MR = `1/2` PR ...(बिंदु M, रेख PR का मध्यबिंदु है।) ...(vii)
∴ LN = `1/2` PR ...[(vi) तथा (vii) से] ...(vii)
∴ LN = `1/2` SQ ...[(vii) तथा (viii) से]
APPEARS IN
RELATED QUESTIONS
ABCD एक चतुर्भुज है जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं (देखिए आकृति में)। AC उसका एक विकर्ण है। दर्शाइए कि
- SR || AC और SR = `1/2 AC` है।
- PQ = SR है।
- PQRS एक समांतर चतुर्भुज है।
ABCD एक आयत है, जिसमें P, Q, R और S क्रमश: भुजाओं AB, BC, CD और DA के मध्य-बिंदु हैं। दर्शाइए कि चतुर्भुज PQRS एक समचतुर्भुज है।
ABCD एक समलंब है, जिसमें AB || DC है। साथ ही, BD एक विकर्ण है और E भुजा AD का मध्य-बिंदु है। E से होकर एक रेखा AB के समांतर खींची गई है, जो BC को F पर प्रतिच्छेद करती है (देखिए आकृति में)। दर्शाइए कि F भुजा BC का मध्य-बिंदु है।
एक समांतर चतुर्भुज ABCD में E और F क्रमश: भुजाओं AB और CD के मध्य-बिंदु हैं (देखिए आकृति में)। दर्शाइए कि रेखाखंड AF और EC विकर्ण BD को समत्रिभाजित करते हैं।
दर्शाइए कि किसी चतुर्भुज की सम्मुख भुजाओं के मध्य-बिंदुओं को मिलाने वाले रेखाखंड परस्पर समद्विभाजित करते हैं।
ABC एक त्रिभुज है जिसका कोण C समकोण है। कर्ण AB के मध्य-बिंदु M से होकर BC के समांतर खींची गई रेखा AC को D पर प्रतिच्छेद करती है। दर्शाइए कि
- D भुजा AC का मध्य-बिंदु है।
- MD ⊥ AC है।
- CM = MA = `1/2 AB` है।
D, E और F क्रमश: एक समबाहु त्रिभुज ABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। दर्शाइए कि ∆DEF भी एक समबाहु त्रिभुज है।
आकृति में ΔABC मे बिंदु X, Y, Z यह क्रमशः भुजाओं AB, BC तथा AC के मध्यबिंदु है। AB = 5 सेमी, AC = 9 सेमी तथा BC = 11 सेमी, तो XY, YZ, XZ की लंबाई ज्ञात कीजिए।
आकृति में ΔABC समबाहु त्रिभुज है जिसमें बिंदु F, D, E यह क्रमशः भुजा AB, भुजा BC, भुजा AC के मध्यबिंदु हैं तो सिद्ध कीजिए कि ΔFED यह समबाहु त्रिभुज है।
संलग्न आकृति में `square` ABCD समलंब चतुर्भुज है। AB || DC है। रेख AD तथा रेख BC के मध्यबिंदु क्रमशः P तथा Q हैं, तो सिद्ध कीजिए कि PQ || AB तथा PQ = `1/2` (AB + DC)