Advertisements
Advertisements
Question
आकृति में, यदि PQRS एक समांतर चतुर्भुज है तथा AB || PS है, तो सिद्ध कीजिए कि OC || SR है।
Solution
प्रश्न के अनुसार,
PQRS एक समांतर चतुर्भुज है,
इसलिए, PQ || SR and PS || QR.
AB || PS भी दिया है।
साबित करने के लिए:
OC || SR
∆OPS और OAB से,
PS || AB
∠POS = ∠AOB ...[उभयनिष्ठ कोण]
∠OSP = ∠OBA ...[संगत कोण]
∴ ∆OPS ∼ ∆OAB ...[AAA समानता मानदंड द्वारा]
फिर,
मूल आनुपातिकता प्रमेय का उपयोग करना,
हम पाते हैं,
`("PS")/("AB") = ("OS")/("OB")` ...(i)
∆CQR और ∆CAB से,
QR || PS || AB
∠QCR = ∠ACB ...[उभयनिष्ठ कोण]
∠CRQ = ∠CBA ...[संगत कोण]
∴ ∆CQR ∼ ∆CAB
फिर, मूल आनुपातिकता प्रमेय द्वारा,
`("QR")/("AB") = ("CR")/("CB")`
⇒ `("PS")/("AB") = ("CR")/("CB")` ...(ii) [PS ≅ QR Since, PQRS एक समांतर चतुर्भुज है]
समीकरण (i) और (ii) से,
`("OS")/("OB") = ("CR")/("CB")`
या
`("OB")/("OS") = ("CB")/("CR")`
L.H.S और R.H.S में से 1 घटाने पर, हमें प्राप्त होता है,
`("OB")/("OS") - 1 = ("CB")/("CR") - 1`
⇒ `("OB" - "OS")/("OS") = ("CB" - "CR")/("CR")`
⇒ `("BS")/("OS") = ("BR")/("CR")`
SR || OC ...[बुनियादी आनुपातिकता प्रमेय के विपरीत]
अतः सिद्ध हुआ।
APPEARS IN
RELATED QUESTIONS
आकृति में, DE || BC है। AD ज्ञात कीजिए:
आकृति में DE || AC और DF || AE है। सिद्ध कीजिए कि `"BF"/"FE" = "BE"/"EC"` है।
आधारभूत समानुपातिकता प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।(याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि `"QS"/"SR" = "PQ"/"PR"` है।
यह दिया है कि `(BC)/(QR) = 1/3` के साथ ΔABC ~ ΔPQR, है। तब `(ar(PRQ))/(ar(BCA))` बराबर ______ है।
यदि ∆ABC ~ ∆QRP, `(ar(ABC))/(ar(PQR)) = 9/4`, AB = 18 cm और BC = 15 cm है, तो PR बराबर ______ है।
क्या निम्नलिखित कथन सत्य है? क्यों?
“दो चतर्भज समरूप होते हैं. यदि उनके संगत कोण बराबर हों”
सिद्ध कीजिए कि समबाहु त्रिभुज के सभी कोण न्यून कोण होते हैं।
ΔXYZ मे XY = 4 सेमी, YZ = 6 सेमी, XZ = 5 सेमी, यदि ΔXYZ ~ ΔPQR तथा PQ = 8 सेमी हो तो ΔPQR की शेष भुजाओं की लंबाई ज्ञात कीजिए।
समरूप त्रिभुजों की जोड़ी की कच्ची आकृति बनाइए । उन्हें नाम दें । उनके सर्वांगसम कोण समान चिह्नों से दर्शाएँ । त्रिभुजों की संगत भुजाओं की लंबाइयाँ समानुपात में हों ऐसी संख्याएँ दर्शाइए ।