Advertisements
Advertisements
Question
आकृतीमध्ये, `square`PQRS हा चक्रीय चौकोन आहे. बाजू PQ ≅ बाजू RQ, ∠PSR = 110°, तर m(कंस QR) = किती?
Solution
∠PQR मध्ये,
बाजू PQ ≅ बाजू RQ …[पक्ष]
∴ ∠PRQ ≅ ∠QPR .............…[समद्विभुज त्रिकोणाचे प्रमेय]
∠PRQ = ∠QPR = x मानू.
आता, ∠PQR + ∠QPR + ∠PRQ = 180° ..........…[त्रिकोणाच्या कोनांच्या मापांची बेरीज 180° असते.]
∴ ∠PQR + x + x = 180°
∴ 70° + 2x = 180°
∴ 2x = 180° - 70°
∴ 2x = 110°
∴ x = `110^circ/2 = 55^circ`
∴ ∠PRQ = ∠QPR = 55° ...(i)
परंतु, ∠QPR = `1/2`m(कंस QR) ..........[अंतर्लिखित कोनाचे प्रमेय]
∴ 55° = `1/2`m(कंस QR)
∴ m(कंस QR) = 110°
APPEARS IN
RELATED QUESTIONS
आकृती मध्ये, `square`PQRS हा चक्रीय आहे. बाजू PQ ≅ बाजू RQ. ∠PSR = 110°, तर
(1) ∠PQR = किती?
(2) m(कंस PQR) = किती?
(3) m(कंस QR) = किती?
(4) ∠PRQ = किती?
केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती?
आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.
∠QTS शी एकरूप असणारे कोन कोणते?
आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.
जर ∠TAS = 65°, तर ∠TQS आणि कंस TS यांची मापे सांगा.
सिद्ध करा: एकाच कंसात अंतर्लिखित झालेले कोन हे एकरूप असतात.
पक्ष : ∠PQR व ∠PSR एकाच कंसात अंतर्लिखित झालेले कोन आहेत, कंस PTR हा त्या कोनांनी अंतर्खंडित केलेला कंस आहे.
साध्य : ∠PQR ≅ ∠PSR
सिद्धता:
m∠PQR = `1/2 xx` [m(कंस PTR)] .......(i) `square`
m∠`square = 1/2 xx` [mकंस PTR] ........(ii) `square`
m∠`square` = m∠PSR ..................[(i) व (ii) वरून]
∴ ∠PQR ≅ ∠PSR
खालील प्रमेय सिद्ध करा:
एकाच कंसात अंतर्लिखित झालेले सर्व कोन एकरूप असतात.
आकृतीमध्ये, जीवा LM ≅ जीवा LN आणि ∠L = 35°, तर
i. m(कंस MN) = किती?
ii. m(कंस LN) = किती?
`square`ABCD हा चक्रीय चौकोन आहे. m(कंस ABC) = 230°. तर ∠ABC, ∠CDA, ∠CBE, यांची मापे काढा.
सोबतच्या आकृतीत, `square`ABCD हा चक्रीय चौकोन आहे. m(कंस BC) = 90° आणि ∠DBC = 55°, तर ∠BCD चे माप काढा.
वरील आकृतीत जीवा PQ आणि जीवा RS एकमेकींना बिंदू T मध्ये छेदतात. जर ∠STQ = 58° आणि ∠PSR = 24°, तर ∠STQ = `1/2` [m(कंस PR) + m(कंस SQ)] या विधानाचा पडताळा घेण्यासाठी खालील कृती पूर्ण करा.
कृती:
ΔPTS मध्ये,
∠SPQ = ∠STQ - `square` .......[∵ त्रिकोणाच्या बाहयकोनाचे प्रमेय.]
∴ ∠SPQ = 34°
∴ m(कंस QS) = 2 × `square`° = 68° .......[∵ `square`]
तसेच m(कंस PR) = 2∠PSR = `square`°
∴ `1/2` [m(कंस QS) + m(कंस PR)] = `1/2` × `square`° = 58° .......(I)
परंतु ∠STQ = 58° .........(II) [दिलेले]
∴ `1/2` [m(कंस PR) + m(कंस QS)] = ∠______ ........[(I) व (II) वरून]