English

आकृतीमध्ये समलंब चौकोन PQRS मध्ये बाजू PQ || बाजू SR, AR = 5 AP, तर सिद्ध करा, SR = 5 PQ. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

आकृतीमध्ये समलंब चौकोन PQRS मध्ये बाजू PQ || बाजू SR, AR = 5 AP, तर सिद्ध करा, SR = 5 PQ. 

 

Sum

Solution

बाजू PQ || बाजू SR व

रेख SQ ही त्यांची छेदिका आहे. .......[पक्ष]

∴ ∠QSR ≅ ∠SQP ........[व्युत्क्रम कोन]

∴ ∠ASR ≅ ∠AQP …(i) [Q−A−S]

∆ASR व ∆AQP मध्ये,

∠ASR ≅ ∠AQP ...................[(i) वरून]

∠SAR ≅ ∠QAP ..............[विरुद्ध कोन]

∴ ∆ASR ∼ ∆AQP .................[समरूपतेची कोको कसोटी]

∴ `"AR"/"AP" = "SR"/"PQ"` ....(ii) [समरूप त्रिकोणांच्या संगत बाजू]

परंतु, AR = 5 AP ..................[पक्ष]

∴ `"AR"/"AP" = 5/1` ............…(iii)

∴ `"SR"/"PQ" = 5/1` ......[(ii) व (iii) वरून]

∴ SR = 5 PQ

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  Is there an error in this question or solution?
Chapter 1: समरुपता - Q.३ (ब)

APPEARS IN

SCERT Maharashtra Geometry (Mathematics 2) [Marathi] 10 Standard SSC
Chapter 1 समरुपता
Q.३ (ब) | Q ३.

RELATED QUESTIONS

आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.


आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.

 


जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?

 


जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?


`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`

 


आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX" + "BX")/"BX" = (square +  square)/square` ......(योग क्रिया करून)

`"AB"/"BX" = square/square` ......(I)

ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)

∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) वरून


ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.) 

 


खालीलपैकी कोणती कसोटी समरूपतेची नाही?


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


शेजारील आकृतीमध्ये, BP लंब AC, CQ लंब AB, A-P-C आणि A-Q-B, तर ∆APB व ∆AQC समरूप दाखवा.

∆APB व ∆AQC मध्ये,

∠APB = `square^circ` ......(i)

∠AQC = `square^circ` ......(ii)

∠APB ≅ ∠AQC …[(i) व (ii) वरून]

∠PAB ≅ ∠QAC .............` square`

∆APB ~ ∆AQC .............` square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×