Advertisements
Advertisements
Question
आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.
Solution
ΔBAC व ΔADC मध्ये,
∠BAC ≅ ∠ADC ........[पक्ष]
∠BCA ≅ ∠ACD ..........[सामाईक कोन]
∴ ΔBAC ∼ ΔADC ........[समरूपतेची कोको कसोटी]
∴ `"CA"/"CD" = "CB"/"CA"` .........[समरूप त्रिकोणांच्या संगत बाजू]
∴ CA × CA = CB × CD
∴ CA2 = CB × CD.
APPEARS IN
RELATED QUESTIONS
आकृती मध्ये ∠ABC = 75°, ∠EDC =75° तर कोणते दोन त्रिकोण कोणत्या कसोटीनुसार समरूप आहेत? त्यांची समरूपता योग्य एकास एक संगतीत लिहा.
आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
आकृती मध्ये दाखवल्याप्रमाणे 8 मीटर व 4 मीटर उंचीचे दोन खांब सपाट जमिनीवर उभे आहेत. सूर्यप्रकाशाने लहान खांबाची सावली 6 मीटर पडते, तर त्याच वेळी मोठ्या खांबाची सावली किती लांबीची असेल?
जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?
`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`
∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?
आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60°
शेजारील आकृतीमध्ये, BP लंब AC, CQ लंब AB, A-P-C आणि A-Q-B, तर ∆APB व ∆AQC समरूप दाखवा.
∆APB व ∆AQC मध्ये,
∠APB = `square^circ` ......(i)
∠AQC = `square^circ` ......(ii)
∠APB ≅ ∠AQC …[(i) व (ii) वरून]
∠PAB ≅ ∠QAC .............` square`
∆APB ~ ∆AQC .............` square`
चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".`
वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.
कृती: ΔABP व ΔCDP मध्ये
`"AP"/"CP" = "BP"/"DP" ....square`
∠APB ≅ `square` ...... विरुद्ध कोन
∴ `square` ∼ ΔCDP ....... समरूपतेची `square` कसोटी.