English

□ABCD एक समलंब चतुर्भुज है। AB || CD समलंब □ABCD के विकर्ण परस्पर बिंदु P में प्रतिच्छेदित करते हैं। इस आधार पर नीचे दिए प्रश्नों के उत्तर लिखिए: दी गई जानकारी के आधार पर आकृति बनाइये। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

Question

`square`ABCD एक समलंब चतुर्भुज है। AB || CD समलंब `square`ABCD के विकर्ण परस्पर बिंदु P में प्रतिच्छेदित करते हैं।

इस आधार पर नीचे दिए प्रश्नों के उत्तर लिखिए:

  1. दी गई जानकारी के आधार पर आकृति बनाइये।
  2. उस आधार पर एकांतर कोणों की तथा शीर्षाभिमुख कोणों की जोड़ियाँ लिखिए।
  3. समरूपता की कसौटीसह समरूप त्रिभुओं के नाम लिखिए।
Sum

Solution


  1. एकांतर कोण: ∠BAP = ∠PCD
    शीर्षाभिमुख कोण: ∠APB = ∠CPD
  2. ΔAPB ∼ ΔCPD .......(कोको कसौटी)
shaalaa.com
त्रिभुजों की समरूपता की कसौटियाँ
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

आकृति में ∠ABC = 75°, ∠EDC = 75° तो इनमें दो त्रिभुज किस कसौटी के अनुसार समरूप हैं? उनकी समरूपता की एकैकी संगति लिखिए।

 


ΔABC में AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तो सिद्ध कीजिए कि ΔCPA ~ ΔCQB। यदि AP = 7, BQ = 8, BC = 12 तो AC का मान ज्ञात कीजिए।


संलग्न आकृति में `square`PQRS एक समलंब चतुर्भुज है। जिसमें भुजा PQ || भुजा SR, AR = 5AP, AS = 5AQ तो सिद्ध कीजिए कि, SR = 5PQ


समलंब चतुर्भुज ABCD में, भुजा AB || भुजा DC विकर्ण AC तथा विकर्ण BD परस्पर बिंदु O पर प्रतिच्छेदित करते हैं। यदि AB = 20, DC = 6, OB = 15 तो OD का मान ज्ञात कीजिए।


संलग्न आकृति में रेख AC तथा रेख BD परस्पर बिंदु P पर प्रतिच्छेदित करते हैं और `"AP"/"CP" = "BP"/"DP"` तो सिद्ध कीजिए कि, ΔABP ∼ ΔCDP.

 


संलग्न आकृति में ΔABC में बिंदु D यह भुजा BC पर इस प्रकार है, कि ∠BAC = ∠ADC तो सिद्ध कीजिए कि, CA2 = CB × CD.

  


आकृति में रेख PQ || रेख DE यदि A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP है, तो A(`square`DPQE) ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

A(ΔPQF) = 20 वर्ग इकाई, PF = 2 DP, माना DP = x ∴ PF = 2x

DF = DP + `square = square + square = 3x`

ΔFDE तथा ΔFPQ में।

∠FDE ≅ ∠`square` (संगत कोण)

∠FED ≅ ∠`square` (संगत कोण)

∴ ΔFDE ∼ ΔFPQ .........(को-को कसौटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = (3x)^2/(2x)^2 = 9/4`

A(ΔFDE) = `9/4`A(ΔFPQ ) = `9/4 xx square = square`

A(`square`DPQE) = A(ΔFDE) - A(ΔFPQ)

= `square - square`

= `square` 


आकृति में रेख XY || भुजा AC. यदि 2AX = 3BX और XY = 9 तो AC का मान ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

कृति : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX + BX")/"BX" = (square + square)/square` ........... (योगानुपात की क्रिया से)

`"AB"/"BX" = square/square` .......... (I)

ΔBCA ~ ΔBYX .......... (समरूपता की `square` कसौटी)

∴ `"BA"/"BX" = "AC"/"XY"` .......... (समरूप त्रिभुजों की संगत भुजा)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) से

 


ΔABC में, रेख XY || रेख AC. यदि 2AX = 3BX तथा XY = 9 हो, तो AC का मान ज्ञात करो।


□ABCD समांतर चतुर्भुज है। बिंदु P, भुजा CD का मध्यबिंदु है। रेख BP यह विकर्ण AC को बिंदु X पर प्रतिच्छेदित करती है, तो सिद्ध करो कि 3AX = 2AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×