English

अजय हा विजयपेक्षा 7 वर्षांनी लहान आहे. त्यांच्या वयांची बेरीज 25 वर्षे आहे, तर त्या दोघांची वये किती? - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

अजय हा विजयपेक्षा 7 वर्षांनी लहान आहे. त्यांच्या वयांची बेरीज 25 वर्षे आहे, तर त्या दोघांची वये किती?

Sum

Solution 1

समजा, अजय आणि विजयचे वय अनुक्रमे x वर्षे आणि y वर्षे आहे.

पहिल्या अटीनुसार,

अजय हा विजयपेक्षा 7 वर्षांनी लहान आहे.

∴ y - x = 7

म्हणजेच, -x + y = 7 …(i)

दुसऱ्या अटीनुसार,

दोघांच्या वयांची बेरीज 25 वर्षे आहे.

∴ x + y = 25 …(ii)

समीकरण (ii) मधून (i) वजा करून,

 x + y = 25
-x + y = 7
+  -     -   
   2x = 18

∴ x = `18/2 = 9`

∴ अजयचे वय 9 वर्षे आहे.

∴ तर विजयचे वय = अजयचे वय + 7

= 9 + 7

= 16

∴ विजयचे वय 16 वर्षे आहे.

∴ अजयचे वय 9 वर्षे, तर विजयचे वय 16 वर्षे आहे. 

shaalaa.com

Solution 2

समजा, अजयचे वय x वर्षे आहे.

अजय विजयपेक्षा 7 वर्षांनी लहान आहे.

∴ विजय वय = x + 7

दिलेल्या अटीनुसार,

त्यांच्या वयांची बेरीज 25 वर्षे आहे.

∴ x + x + 7 = 25

∴ 2x + 7 = 25

∴ 2x = 18

∴ x = `18/2` = 9

∴ अजयचे वय 9 वर्षे आहे.

∴ तर विजयचे वय = अजयचे वय + 7

= 9 + 7

= 16

विजयचे वय 16 वर्षे आहे.

∴ अजयचे वय 9 वर्षे तर विजयचे वय 16 वर्षे आहे.

shaalaa.com
एकसामयिक रेषीय समीकरणे
  Is there an error in this question or solution?
Chapter 1: दोन चलातील रेषीय समीकरणे - Q.३ (ब)

APPEARS IN

SCERT Maharashtra Algebra (Mathematics 1) [Marathi] 10 Standard SSC
Chapter 1 दोन चलातील रेषीय समीकरणे
Q.३ (ब) | Q २.

RELATED QUESTIONS

खालील एकसामयिक समीकरण सोडवा.

3a + 5b = 26; a + 5b = 22


खालील एकसामयिक समीकरण सोडवा.

5m - 3n = 19; m - 6n = -7


खालील एकसामयिक समीकरण सोडवा.

49x - 57y = 172; 57x - 49y = 252 


खालील एकसामयिक समीकरणे सोडवा.

`7/(2x + 1) + 13/(y + 2) = 27; 13/(2x + 1) + 7/(y + 2) = 33`


खालील एकसामयिक समीकरणे सोडवा.

`1/(2(3x + 4y)) + 1/(5(2x - 3y)) = 1/4; 5/(3x + 4y) - 2/(2x - 3y) = - 3/2`


x - y = 10 आणि x + y = 70 या समीकरणांची उकल ______ आहे.


4x + 5y = 20 या समीकरणामध्ये x = 0 असताना y ची किंमत काढा.


जर (2, 0) ही 2x + 3y = k या समीकरणाची उकल असेल, तर k ची किंमत काढण्यासाठी कृती पूर्ण करा.

कृती: (2, 0) ही 2x + 3y = k या समीकरणाची उकल आहे. 

x = `square` आणि y = `square` किमती घालू.

∴ 2 `square + 3 xx 0 = "k"`

∴ 4 + 0 = k

∴ k = `square`


a आणि b वापरून कोणतीही दोन समीकरणे लिहा ज्यांची उकल (0, 2) असेल.


जर (0, 2) ही 2x + 3y = k या समीकरणाची उकल असेल, तर k ची किंमत काढण्यासाठी कृती पूर्ण करा:

कृती:

(0, 2) ही 2x + 3y = k या समीकरणाची उकल आहे. 

∴ x = `square` आणि y = `square` या किंमती दिलेल्या समीकरणात ठेवून.

∴ 2 × `square` + 3 × 2 = k

∴ 0 + 6 = k

∴ k = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×