Advertisements
Advertisements
Question
Assertion: Recursion utilises more memory as compared to iteration.
Reason: Time complexity of recursion is higher due to the overhead of maintaining the function call stack.
Options
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Both Assertion and Reason are true but Reason is not the correct explanation for Assertion.
Assertion is true and Reason is false.
Assertion is false and Reason is true.
Solution
Both Assertion and Reason are true but Reason is not the correct explanation for Assertion.
Explanation:
- Assertion: The assertion is correct since recursion often requires extra memory due to the function call stack.
- Reason: The reason is also true, but it is not an accurate explanation for the assertion because the greater memory usage in recursion is mostly due to the call stack rather than the time complexity.
APPEARS IN
RELATED QUESTIONS
If the Fibonacci number is defined recursively as F(n) = `{(0, "n" = 0), (1, "n" = 1), ("F"("n" - 1),+ "F"("n" - 2) "otherwise"):}`
to evaluate F(4), how many times F() is applied?
Using this recursive definition
`"a"^"n" = {(1, "if" "n" = 0), ("a" × "a"^("n" - 1), "otherwise"):}`
how many multiplications are needed to calculate a10?
What is recursive problem-solving?
Define factorial of a natural number recursively.
Power can also be defined recursively as
`"a"^"n" = {(1, "if" "n" = 0), ("a" × "a"^("n" - 1), "if n is odd"), ("a"^("n""/"2) × "a"^("n""/"2), "if n is even"):}`
Construct a recursive algorithm using this definition. How many multiplications are needed to calculate a10?
A single-square-covered board is a board of 2n x 2n squares in which one square is covered with a single square tile. Show that it is possible to cover this board with triominoes without overlap.
Give one reason, why iteration is better than recursion.
Differentiate between direct recursion and indirect recursion.
The following function task() is a part of some class. Assume ‘m’ and ‘n’ are positive integers greater than 0. Answer the questions given below along with dry / run working.
int task(int m, int n)
{ if(m=n)
return m;
else if (m>n)
return task(m-n, n);
else
return task(m, n-m)
}
- What will the function task() return when the value of m=30 and n=45?
- What function does task() perform, apart from recursion?