English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Power can also be defined recursively as anifnaanif n is oddan/an/if n is evenan={1if n=0a×an-1if n is oddan/2×an/2if n is even Construct a recursive algorithm using this definition. - Computer Science

Advertisements
Advertisements

Question

Power can also be defined recursively as

`"a"^"n" = {(1, "if"  "n" = 0), ("a" × "a"^("n" - 1), "if n is odd"), ("a"^("n""/"2) × "a"^("n""/"2), "if n is even"):}`

Construct a recursive algorithm using this definition. How many multiplications are needed to calculate a10?

Sum

Solution

Power:

power (5, 2) = 5 x 5 = 25

power (x, n) raise x to the power n

Algorithm:

power (x, n)

if n = 0 --base case
1
else  --recursion step
if n is odd
x * power (x, n - 1)
else
p = power (x, n/2)
p * p

To find a10:

Power (a, 10) n = 10     even                      (a, 10)
Power (a, 5) n = 5         odd                       (a, 5)
Power (a, 4) n = 4       even                        (a, 4)
Power (a, 2) n = 2       even                        (a, 2)
Power (a, 1) n = 1       odd                         (a, 1)
Power (a, 0) n = 0                                     (a, 10)
shaalaa.com
Recursion
  Is there an error in this question or solution?
Chapter 8: Iteration and recursion - Evaluation - Section - D [Page 114]

APPEARS IN

Samacheer Kalvi Computer Science [English] Class 11 TN Board
Chapter 8 Iteration and recursion
Evaluation - Section - D | Q 2. | Page 114
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×