Advertisements
Advertisements
Question
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is ______.
Options
`1/2`
`1/3`
`2/3`
`4/7`
Solution
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is `4/7`.
Explanation:
Let G denotes the girl and B denotes the boy of the given family.
So, n(S) = {(BGG), (GBG), (GGB), (GBB), (BGB), (BBG), (BBB), (GGG)}
Let E1 be the event that the family has alteast one girl.
∴ E1 = {(BGG), (GBG), (GGB), (GBB), (BGB), (BBG), (GGG)}
Let E2 be the event that the eldest child is a girl.
∴ E2 = {(GBG), (GGB), (GBB), (GGG)}
(E1 ∩ E2) = {(GBB), (GGB), (GBG), (GGG)}
∴ `"P"("E"_2/"E"_1) = ("P"("E"_1 ∩ "E"_2))/("P"("E"_1))`
= `(4/8)/(7/8)`
= `4/7`
APPEARS IN
RELATED QUESTIONS
A coin is tossed 5 times. What is the probability of getting at least 3 heads?
A coin is tossed 5 times. What is the probability that tail appears an odd number of times?
Bag A contains 1 white, 2 blue and 3 red balls. Bag B contains 3 white, 3 blue and 2 red balls. Bag C contains 2 white, 3 blue and 4 red balls. One bag is selected at random and then two balls are drawn from the selected bag. Find the probability that the balls draw n are white and red.
One dialing certain telephone numbers assume that on an average, one telephone number out of five is busy, Ten telephone numbers are randomly selected and dialed. Find the probability that at least three of them will be busy.
A committee of 4 persons has to be chosen from 8 boys and 6 girls, consisting of at least one girl. Find the probability that the committee consists of more girls than boys.
State the sample space and n(S) for the following random experiment.
A coin is tossed twice. If a second throw results in head, a die thrown, otherwise a coin is tossed.
In a bag, there are three balls; one black, one red, and one green. Two balls are drawn one after another with replacement. State sample space and n(S).
Find total number of distinct possible outcomes n(S) of the following random experiment.
5 balls are randomly placed into 5 cells, such that each cell will be occupied.
Find total number of distinct possible outcomes n(S) of the following random experiment.
6 students are arranged in a row for a photograph.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events Q and R are mutually exclusive and exhaustive.
A car manufacturing factory has two plants, X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30%. 80% of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. A car is chosen at random and is found to be of standard quality. What is the probability that it has come from plant X?
A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that at least one of the three marbles drawn be black, if the first marble is red?
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
A die is thrown three times. Let X be ‘the number of twos seen’. Find the expectation of X.
There are two bags, one of which contains 3 black and 4 white balls while the other contains 4 black and 3 white balls. A die is thrown. If it shows up 1 or 3, a ball is taken from the Ist bag; but it shows up any other number, a ball is chosen from the second bag. Find the probability of choosing a black ball.
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
A bag contains (2n + 1) coins. It is known that n of these coins have a head on both sides where as the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is `31/42`, determine the value of n.
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is ______.
In a college, 30% students fail in physics, 25% fail in mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in physics if she has failed in mathematics is ______.
A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`, respectively. If the probability of their making a common error is, `1/20` and they obtain the same answer, then the probability of their answer to be correct is ______.
Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card Jack?
The letters of the word "ATTRACTION' are written randomly. The probability that no two T's appear together is
Three horses A, B, Care in a race. A is twice as likely to win as B, and B is twice as likely to win as C. The probability that C wins, P(C) is
The probability of getting qualified in JEE-Mains and JEE-Advanced by a student are `1/5` and `3/5` respectively. The probability that the students gets qualified for one of these tests is
Bag P contains 6 red and 4 blue balls and bag Q contains 5 red and 6 blue balls. A ball is transferred from bag P to bag Q and then a ball is drawn from bag Q. What is the probability that the ball drawn is blue?
Assertion (A): Two coins are tossed simultaneously. The probability of getting two heads, if it is known that at least one head comes up, is `1/3`.
Reason (R): Let E and F be two events with a random experiment, then `P(E/F) = (P(E ∩ F))/(P(E))`.