Advertisements
Advertisements
Question
At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age, Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.
Solution
Let Nisha’s present age be x years.
Then, Asha’s present age = x2 + 2 .....[By given condition]
Now, when Nisha grows to her mother’s present age
i.e., After [(x2 + 2) – x] year.
Then, Asha’s age also increased by [(x2 + 2) – x] year.
Again by given condition,
Age of Asha = One year less than 10 times the present age of Nisha
(x2 + 2) + {(x2 + 2) – x} = 10x – 1
⇒ 2x2 – x + 4 = 10x – 1
⇒ 2x2 – 11x + 5 = 0
⇒ 2x2 – 10x – x + 5 = 0
⇒ 2x(x – 5) – 1(x – 5) = 0
⇒ (x – 5)(2x – 1) = 0
∴ x = 5
[Here, x = `1/2` cannot be possible, because at x = `1/2`, Asha's age is `2 1/4` year which is not possible]
Hence, required age of Nisha = 5 years
And required age of Asha = x2 + 2 = (5)2 = 25 + 2 = 27 years.
APPEARS IN
RELATED QUESTIONS
A passenger train takes one hour less for a journey of 150 km if its speed is increased by 5 km/hr from its usual speed. Find the usual speed of the train.
If two pipes function simultaneously, a reservoir will be filled in 12 hours. One pipe fills the reservoir 10 hours faster than the other. How many hours will the second pipe take to fill the reservoir?
The sum of the squares of two consecutive multiples of 7 is 637. Find the multiples ?
Solve the following quadratic equation by factorisation.
2y2 + 27y + 13 = 0
Solve the following equation and give your answer up to two decimal places:
x2 - 5x - 10 = 0
Two pipes running together can 1 fill a cistern in 11 1/9 minutes. If one pipe takes 5 minutes more than the other to fill the cistern find the time when each pipe would fill the cistern.
In each of the following, determine whether the given values are solution of the given equation or not:
`a^2x^2 - 3abx + 2b^2 = 0; x = a/b, x = b/a`.
Solve the following equation by factorization
x(6x – 1) = 35
Mohini wishes to fit three rods together in the shape of a right triangle. If the hypotenuse is 2 cm longer than the base and 4 cm longer than the shortest side, find the lengths of the rods.
Which of the following are the roots of the quadratic equation, x2 – 9x + 20 = 0 by factorisation?