Advertisements
Advertisements
Question
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`sqrt(28)/sqrt(343)`
Solution
`sqrt(28)/sqrt(343) = sqrt(2 xx 2 xx 7)/sqrt(7 xx 7 xx 7)`
= `(2sqrt(7))/(7sqrt(7))`
= `2/7`
अतः, यह एक परिमेय संख्या है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`2/11`
आप जानते हैं कि `1/7 = 0.bar142857` है। वास्तव में, लंबा भाग दिए बिना क्या आप यह बता सकते हैं कि `2/7, 3/7, 4/7, 5/7, 6/7` के दशमलव प्रसार क्या हैं? यदि हाँ, तो कैसे?
[संकेत: `1/7` का मान ज्ञात करते समय शेषफलों का अध्ययन सावधानी से कीजिए।]
`7/(3sqrt(3) - 2sqrt(2))` के हर का परिमेयीकरण करने पर, हमें प्राप्त हर है :
`root(4)((81)^-2)` का मान है :
मान लीजिए कि x एक परिमेय संख्या है और y एक अपरिमेय संख्या है। क्या xy आवश्यक रूप से एक अपरिमेय संख्या है? एक उदाहरण द्वारा अपने उत्तर का औचित्य दीजिए।
कुछ संख्याएँ ऐसी हैं कि जिन्हें `p/q, q ≠ 0` के रूप में नहीं लिखा जा सकता, जहाँ p और q दोनों पूर्णांक हैं।
एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
`sqrt(15)/sqrt(3), p/q, q ≠ 0` के रूप में लिखी है, इसलिए यह एक परिमेय संख्या है।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`sqrt(196)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`3sqrt(18)`