Advertisements
Advertisements
Question
एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या होती है।
Options
सत्य
असत्य
Solution
यह कथन असत्य है।
स्पष्टीकरण -
आइए अपरिमेय संख्याओं `sqrt(2)` और `root(4)(2)` पर विचार करें
- `(sqrt(2))^2 = 2`, जो एक परिमेय संख्या है।
- `(root(4)(2))^2 = sqrt(2)`, जो एक अपरिमेय संख्या है।
अतः, एक अपरिमेय संख्या का वर्ग सदैव एक परिमेय संख्या नहीं होता है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित भिन्न को दशमलव रूप में लिखिए और बताइए कि निम्न दशमलव प्रसार किस प्रकार का है:
`36/100`
निम्नलिखित को `bb(p/q)` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है:
`0.4bar7`
0.99999 .... को `p/q` के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।
`p/q` (q ≠ 0) के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ p और q पूर्णाक हैं, जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण (प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि q को कौन-सा गुण अवश्य संतुष्ट करना चाहिए?
`1/(sqrt(7) - 2)` के हर का परिमेयीकरण करने पर प्राप्त संख्या है :
यदि `sqrt(2) = 1.4142` है, तो `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` बराबर है :
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`sqrt(196)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`- sqrt(0.4)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`(1 + sqrt(5)) - (4 + sqrt(5))`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
10.124124...