Advertisements
Advertisements
Question
Calculate the standard enthalpy of combustion of CH3COOH(l) from the following data:
`Delta_fH^@(CO_2)=-393.3 kJ mol^-1`
`Delta_fH^@(H_2O)=-285.8 kJ mol^-1`
`Delta_fH^@(CH_3COOH)=-483.2 kJ mol^-1`
Solution
`C_((s))+O_(2(g))->CO_(2(g))` `Delta_fH^@=-393.3 kJ mol^-1`...(1)
`H_(2(g))+1/2O_(2(g))->H_2O_((l))` `Delta_fH^@=-285.8 kJ mol^-1`...(2)
`2C_((s))+2H_(2(g))+O_(2(g))->CH_3COOH` `Delta_fH^@=-483.2 kJ mol^-1` ...(3)
The required equation is,
CH3COOH(l) + 2O2(g) →2CO2(g) + 2H2O(l)
Multiplying equation (1) and equation (2) by 2, then adding to reverse of equation (3).
`2C_((s))+2O_(2(g))->2CO_(2(g))` `Delta_fH^@=-786.6 kJ mol^-1`
`2H_(2(g))+1O_(2(g))->2H_2O_((l))` `Delta_fH^@=-571.6 kJ mol^-1`
`CH_3COOH_(l)->2C_((s))+2H_(2(g))+O_(2(g))` `Delta_fH^@= 483.2 kJ mol^-1`
--------------------------------------------------------------------------------------------
`CH_3COOH_(l)+2O_(2(g))->2CO_(2(g))+2H_2O_((l))` `Delta_fH^@=-875 kJ mol^-1`
APPEARS IN
RELATED QUESTIONS
Define enthalpy of sublimation.
Calculate C-Cl bond enthalpy from following reaction:
CH3Cl(g) + Cl2(g) → Ch2Cl2(g) + HCl(g) ΔH° = -104KJ
If C-H, Cl-Cl and H-Cl bond enthalpies are 414, 243 and 431 KJ-Mol-1 respectively.
For the reaction: Cl2(g) → 2Cl(g), _______.
(A) ΔH is positive, ΔS is positive
(B) ΔH is positive, ΔS is negative
(C) ΔH is negative, ΔS is negative
(D) ΔH is negative, ΔS is positive
Calculate ΔH° for the reaction between ethene and water to form ethyl alcohol from the
following data:
ΔcH° C2H5OH(l) = -1368 kJ
ΔcH° C2H4(g) = -1410 kJ
Does the calculated ΔH° represent the enthalpy of formation of liquid ethanol?
Calculate the standard enthalpy of the reaction, 2C(graphite) + 3H2(g) → C2H6(g), ΔH° = ?
From the following ΔH° values
a) `C_2H_6(g) + 7/2 O_2(g) -> 2CO_2(g) + 3H_2 O(l)`. ΔH° = -1560kJ
b) `H_2(g) + 1/2 O_2 (g) -> H_2O(l)` ΔH° = -285.8kJ
c) C(graphite) + O2(g) -> CO2(g). ΔH° = -393.5kJ
Calculate ∆H° for the following reaction:
2H3BO3(aq) → B2O3(s) + 3H2O(l)
a) H3BO3(aq) → HBO2(aq) + H2O(l) , ∆`H_1^@` = − 0.02 kJ
b) H2B4O7(s) → 2B2O3(s) + H2O(l) , ∆`H_2^@` = 17.3 kJ
c)H2B4O7(s) + H2O(l) → 4HBO2(aq), ∆`H_3^@` = − 11.58 kJ
Calculate the work done in the following reaction at 50°C. State whether work is done on the system or by the system.
`"SO"_2("g") + 1/2"O"_(2("g")) rightarrow "SO"_(3("g"))`