Advertisements
Advertisements
Question
Construct a 2 × 2 matrix, `A= [a_(ij)]`, whose elements are given by `a_(ij) = i/j`
Solution
In general, a 2 × 2 matrix is given by A = `[(a_(11), a_(12)),(a_(21), a_(22))]`
`a_ij = i/j`, i , j = 1, 2
`:. a_(11) = 1/1 = 1`
`a_(12) = 1/2`
`a_(21) = 2/1 = 2`
`a_(22) = 2/2 = 1`
Therefore, the required matrix is A = `[(1, 1/2), (2,1)]`
APPEARS IN
RELATED QUESTIONS
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If A is a 3 × 3 matrix |3A| = k|A|, then write the value of k.
In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`
Write the number of elements,
In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`
Write the elements a13, a21, a33, a24, a23
If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
Construct a 2 × 2 matrix, `A = [a_(ij)]` whose elements are given by `a_(ij) = (1 + 2j)^2/2`
Construct a 3 × 4 matrix, whose elements are given by `a_(ij) = 1/2 |-3i + j|`
Construct a 3 × 4 matrix, whose elements are given by `a_(ij) = 2i - j`
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is ______.
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively.
The restrictions on n, k and p so that PY + WY will be defined are ______.
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k respectively.
If n = p, then the order of the matrix is 7X - 5Z is ______.
If A, B are symmetric matrices of same order, then AB − BA is a ______.
If a matrix has 5 elements, write all possible orders it can have.
Write the number of all possible matrices of order 2 x 3 with each entry 1 or 2.
Construct a matrix A = [aij]2×2 whose elements aij are given by aij = e2ix sin jx.
If A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, then which of the sums A + B, B + C, C + D and B + D is defined?
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The order of the matrix A
Construct a2 × 2 matrix where aij = `("i" - 2"j")^2/2`
Construct a2 × 2 matrix where aij = |–2i + 3j|
If A is matrix of order m × n and B is a matrix such that AB′ and B′A are both defined, then order of matrix B is ______.
The number of all the possible matrices of order 2 x 2 with each entry 0, 1, or 2 is ____________.
The order of [x y z] `[("a","h","g"),("h","b","f"),("g","f","c")] [("x"),("y"),("z")]` is ____________.
`[(2,0,3),(5,1,0),(0,1,-1)]`
`[(0,-1,1),(2,-3,4),(3,-3,4)]`
Given that matrices A and B are of order 3 × n and m × 5 respectively, then the order of matrix C = 5A + 3B is:
If a matrix has 6 elements, then number of possible orders of the matrix can be ____________.
Total number of possible matrices of order 2 × 3 with each entry 1 or 0 is ____________.
Consider the following information regarding the number of men and women workers in three factories I, II and III
MEN WORKERS | WOMEN WORKERS | |
I | 30 | 25 |
II | 25 | 31 |
III | 27 | 26 |
Which of the following represent the above information in the form of a 3 × 2 matrix.
The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to ______.