Advertisements
Advertisements
Question
Construct a matrix A = [aij]3 × 2 whose element aij is given by
aij = `(("i" - "j")^2)/(5 - "i")`
Solution
A = [aij]3 × 2 = `[("a"_11, "a"_12),("a"_21, "a"_22),("a"_31, "a"_32)]`
Given that aij = `(("i" - "j")^2)/(5 - "i")`
∴ a11 = `((1 - 1)^2)/(5 - 1) = 0/4` = 0
a12 = `((1 - 2)^2)/(5 - 1) = 1/4`
a21 = `((2 - 1)^2)/(5 - 2) = 1/3`
a22 = `((2 - 2)^2)/(5 - 2) = 0/3` = 0
a31 = `((3 - 1)^2)/(5 - 3) = 4/2` = 2
a32 = `((3 - 2)^2)/(5 - 3) = 1/2`
∴ A = `[(0, 1/4),(1/3, 0),(2, 1/2)]`
APPEARS IN
RELATED QUESTIONS
State, whether the following statement is true or false. If false, give a reason.
The matrices A2 × 3 and B2 × 3 are conformable for subtraction.
State, whether the following statement is true or false. If false, give a reason.
Transpose of a square matrix is a square matrix.
Given : `[(x, y + 2),(3, z - 1)] = [(3, 1),(3, 2)]`; find x, y and z.
Solve for a, b and c; if `[(a, a - b),(b + c, 0)] = [(3, -1),(2, 0)]`
If A = `[(8, -3)]` and B = `[(4, -5)]`; find B – A
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C
Wherever possible, write the following as a single matrix.
`[(2, 3, 4),(5, 6, 7)] - [(0, 2, 3),(6, -1, 0)]`
Find x and y from the given equations:
`[(5, 2),(-1, y - 1)] - [(1, x - 1),(2, -3)] = [(4, 7),(-3, 2)]`
Find x and y from the given equations:
`[(-8, x)] + [(y, -2)] = [(-3, 2)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A – B) . C = A . C – B . C
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(A – B)2 = A2 – 2A . B + B2
If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.
Solve the following system of linear equation using matrix method:
`1/x + 1/y +1/z = 9`
`2/x + 5/y+7/z = 52`
`2/x+1/y-1/z=0`
Classify the following matrix :
`|(800),(521)|`
If P= (8,5),(7,2) find : P + Pt
If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.
Evaluate the following :
`|(2 , 3),(-4 , 0)| |(3 , -2),(-1 , 4)|`
Evaluate the following :
`|(2,1) ,(3,2),(1 , 1)| |(1 , -2 , 1),(2 , 1 , 3)|`
Evaluate the following :
`|(0 , 1),(-1 , 2),(-2 , 0)| |(0 , -4 , 0),(3 , 0 , -1)|`
If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|` find BA
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of P(Q + R)
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
Let A = `|(3 , 2),(0 ,5)|` and B = `|(1 ,0),(1 ,2)|` , find (i) (A + B)(A - B) (ii) A2 - B2 . Is (i) equal to (ii) ?
Write the negation of the following statements :
(a) Radha likes tea or coffee.
(b) `∃x cc` R such that x + 3 ≥ 10.
If A = `[(1,2), (1,3)]`, find A2 - 3A
Solve the following minimal assignment problem :
Machines | Jobs | ||
I | II | III | |
M1 | 1 | 4 | 5 |
M2 | 4 | 2 | 7 |
M3 | 7 | 8 | 3 |
If `"A" = [(1,2,-3),(5,4,0)] , "B" = [(1,4,3),(-2,5,0)]`, then find 2A + 3B.
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .
[2 3 – 7]
`[(3),(0),(-1)]`
`[(2 , 7, 8),(-1 , sqrt(2), 0)]`
`[(0, 0, 0),(0, 0, 0)]`
Construct a 2 x 2 matrix whose elements aij are given by aij = i.j
Construct a matrix A = [aij]3 × 2 whose element aij is given by
aij = i – 3j
Event A: Order of matrix A is 3 × 5.
Event B: Order of matrix B is 5 × 3.
Event C: Order of matrix C is 3 × 3.
Product of which two matrices gives a square matrix.