मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Construct a matrix A = = [aij]3×2 whose element aij is given by aij = (i-j)25-i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = `(("i" - "j")^2)/(5 - "i")`

बेरीज

उत्तर

A = [aij]3 × 2 = `[("a"_11, "a"_12),("a"_21, "a"_22),("a"_31, "a"_32)]`

Given that aij = `(("i" - "j")^2)/(5 - "i")`

∴ a11 = `((1 - 1)^2)/(5 - 1) = 0/4` = 0

a12 = `((1 - 2)^2)/(5 - 1) = 1/4`

a21 = `((2 - 1)^2)/(5 - 2) = 1/3`

a22 = `((2 - 2)^2)/(5 - 2) = 0/3` = 0

a31 = `((3 - 1)^2)/(5 - 3) = 4/2` = 2

a32 = `((3 - 2)^2)/(5 - 3) = 1/2`

∴ A = `[(0, 1/4),(1/3, 0),(2, 1/2)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Exercise 4.4 | Q 1. (i) | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

State, whether the following statement is true or false. If false, give a reason.

The matrices A2 × 3 and B2 × 3 are conformable for subtraction.


State, whether the following statement is true or false. If false, give a reason.

Transpose of a 2 × 1 matrix is a 2 × 1 matrix.


Solve for a, b and c; if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`


If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – C


Wherever possible, write the following as a single matrix.

`[(0, 1, 2),(4, 6, 7)] + [(3, 4),(6, 8)]`


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

A + B = B + A


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

(B . C) . A = B . (C . A)


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

 (A + B) . C = A . C + B . C


If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – B + C


If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.


Find the inverse of the matrix A=`[[1,2],[1,3]]` using elementry transformations.  


Solve the following system of linear equation using matrix method: 
`1/x + 1/y +1/z = 9`

`2/x + 5/y+7/z = 52`

`2/x+1/y-1/z=0`


Find the values of a and b) if [2a + 3b a - b] = [19  2]. 


Find the values of x and y, if  `|(3"x" - "y"),(5)| = |(7) , ("x + y")|`


If M =`|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10,1)|` find M - N


If P= (8,5),(7,2) find : P + Pt


Evaluate the following :

`|(0 , 1),(-1 , 2),(-2 , 0)|  |(0 , -4 , 0),(3 , 0 , -1)|`


Evaluate the following :

`|(6 , 1),(3 , 1),(2 , 4)|  |(1 , -2 , 1),(2 , 1 , 3)|`


If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|`   find AB


If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|`  find BA


If P = `|(1 , 2),(2 , 1)|` and Q = `|(2 , 1),(1 , 2)|` find P (QP).


If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.


If A = `[(2, 3), (1, 2)], B = [(1, 0),(3, 1)]`, Find (AB)-1


Write the negation of the following statements :
(a) Radha likes tea or coffee.
(b) `∃x cc` R such that x + 3 ≥ 10.


If A = `[(1,1),(2,2)] , "B" = [(1,2),(3,4)]` then find |AB|.


Using the truth table statement, examine whether the statement pattern (p → q) ↔ (∼ p v q) is a tautology, a contradiction or a contingency.


If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .


`[(0, 0, 0),(0, 0, 0)]`


If a matrix has 4 elements, what are the possible order it can have?


Construct a 2 x 2 matrix whose elements aij are given by aij = 2i – j


Let `"M" xx [(1, 1),(0, 2)]` = [1 2] where M is a matrix.

  1. State the order of matrix M
  2. Find the matrix M

Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = i – 3j


Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = `(("i" + "j")^3)/5`


If a matrix A = `[(0, 1),(2, -1)]` and matrix B = `[(3),(1)]`, then which of the following is possible:


If `M xx [(3, 2),(-1, 0)] = [(3, -1)]`, the order of matrix M is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×