English

Decompose the Vector 6 ^ I − 3 ^ J − 6 ^ K into Vectors Which Are Parallel and Perpendicular to the Vector ^ I + ^ J + ^ K . - Mathematics

Advertisements
Advertisements

Question

Decompose the vector \[6 \hat{i} - 3 \hat{j} - 6 \hat{k}\] into vectors which are parallel and perpendicular to the vector \[\hat{i} + \hat{j} + \hat{k} .\] 

Solution

\[\text{ Let } \vec{a} =6 \hat{i} - 3 \hat{j} - 6 \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} + \hat{k} \]

\[\text{ and } \vec{x} \text{ and } \vec{y} \text{ be such that }\]

\[ \vec{a} = \vec{x} + \vec{y} \]

\[ \Rightarrow \vec{y} = \vec{a} - \vec{x} . . . \left( 1 \right)\]

\[\text{ Since } \vec{x} \text{ is parallel to } \vec{b} ,\]

\[ \vec{x} = t \vec{b} \]

\[ \Rightarrow \vec{x} = t \left( \hat{i} + \hat{j} + \hat{k} \right) = t \hat{i} + t \hat{j} + t \hat{k} ...(2)\]

\[\text{ Substituting the values of } \vec{x} \text{ and } \vec{a} \text{ in } (1), \text{ we get }\]

\[ \vec{y} = 6 \hat{i} - 3 \hat{j} - 6 \hat{k} - \left( t \hat{i} + t \hat{j} + t \hat{k} \right) = \left( 6 - t \right) \hat{i} + \left( - 3 - t \right) \hat{j} + \left( - 6 - t \right) \hat{k} . . . \left( 3 \right)\]

\[\text{ Since } \vec{y} \text{ is perpendicular to } \vec{b} ,\]

\[ \vec{y} . \vec{b} = 0\]

\[ \Rightarrow \left[ \left( 6 - t \right) \hat{i} + \left( - 3 - t \right) \hat{j} + \left( - 6 - t \right) \hat{k} \right] . \left( \hat{i} + \hat{j} + \hat{k}\right) = 0\]

\[ \Rightarrow 1 \left( 6 - t \right) + 1\left( - 3 - t \right) + 1 \left( - 6 - t \right) = 0\]

\[ \Rightarrow - 3 - 3t = 0\]

\[ \Rightarrow t = - 1\]

\[\text{ From } (2) \text{ and } (3), \text{we get}\]

\[ \vec{x} = - \hat{i} - \hat{j} - \hat{k} \]

\[ \vec{y} = 7 \hat{i} - 2 \hat{j} - 5 \hat{k} \] 

\[\text{ So },\]

\[ \vec{a} = \vec{x} + \vec{y} = \left( - \hat{i} - \hat{j} - \hat{k} \right) + \left( 7 \hat{i} - 2 \hat{j} - 5 \hat{k} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 37 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the magnitude of the following vector:

`veca = hati + hatj + hatk;` `vecb = 2hati - 7hatj - 3hatk`;  `vecc = 1/sqrt3 hati + 1/sqrt3 hatj - 1/sqrt3 hatk`


Write two different vectors having same magnitude.


The value of is `hati.(hatj xx hatk)+hatj.(hatixxhatk)+hatk.(hatixxhatj)` is ______.


Find the projection of \[\vec{b} + \vec{c}  \text { on }\vec{a}\]  where \[\vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]


If two vectors \[\vec{a} \text{ and } \vec{b}\] are such that \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 1 \text{ and } \vec{a} \cdot \vec{b} = 1,\]  then find the value of \[\left( 3 \vec{a} - 5 \vec{b} \right) \cdot \left( 2 \vec{a} + 7 \vec{b} \right) .\] 


If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\]  in each of the following. 

\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 12\] 


Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 12 \text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find  \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 8 \text{ and } \left| \vec{a} \right| = 8\left| \vec{b} \right|\]


Find \[\left| \vec{a} - \vec{b} \right|\] if 

\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} \cdot \vec{b} = 8\]


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] if 

\[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = 2 \text{ and } \vec{a} \cdot \vec{b} = \sqrt{6}\] 


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\]  

\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 1\]


Express the vector \[\vec{a} = 5 \text{i} - 2 \text{j} + 5 \text{k}\] as the sum of two vectors such that one is parallel to the vector \[\vec{b} = 3 \text{i} + \text{k}\]  and other is perpendicular to \[\vec{b}\]


Express \[2 \hat{i} - \hat{j} + 3 \hat{k}\] as the sum of a vector parallel and a vector perpendicular to \[2 \hat{i} + 4 \hat{j} - 2 \hat{k} .\] 

 


If \[\vec{a} \cdot \vec{a} = 0 \text{ and } \vec{a} \cdot \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] ?


If \[\vec{a,} \vec{b,} \vec{c}\]  are three non-coplanar vectors, such that \[\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0,\] then show that \[\vec{d}\] is the null vector.


If a vector \[\vec{a}\] is perpendicular to two non-collinear vectors \[\vec{b} \text{ and } \vec{c} , \text{ then show that } \vec{a}\] is perpendicular to every vector in the plane of \[\vec{b} \text{ and } \vec{c} .\] 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} ,\] show that the angle θ between the vectors \[\vec{b} \text{ and } \vec{c}\] is given by  \[\frac{\left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 - \left| \vec{c} \right|^2}{2\left| \vec{b} \right| \left| \vec{c} \right|} .\]


Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude. 


If \[\vec{a}\] \[\vec{b}\]  are two vectors such that \[\left| \vec{a} + \vec{b} \right| = \left| \vec{b} \right|\] then prove that \[\vec{a} + 2 \vec{b}\] is perpendicular to \[\vec{a}\] 


If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.


Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`


What is the product of  `(3veca * 5vecb) * (2veca + 7vecb)`


What are the values of x for which the angle between the vectors? `2x^2hati + 3xhatj + hatk` and `hati - 2hatj + x^2hatk` is obtuse?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×