Advertisements
Advertisements
Question
Define secular trend
Solution
It is a general tendency of time series to increase or decrease or stagnates during a long period of time, an upward tendency is usually observed in population of a country, production, sales, prices in industries, income or individuals etc.
A downward tendency is observed in deaths, epidemics, prices of electronic gadgets, water sources, mortality rate etc.
It is not necessarily that the increase or decrease should be in the same direction throughout the given period of time.
APPEARS IN
RELATED QUESTIONS
Mention the components of the time series
Discuss about irregular variation
Compute the average seasonal movement for the following series
Year | Quarterly Production | |||
I | II | III | IV | |
2002 | 3.5 | 3.8 | 3.7 | 3.5 |
2203 | 3.6 | 4.2 | 3. | 4.1 |
2004 | 3.4 | 3.9 | 37 | 4.2 |
2005 | 4.2 | 4.5 | 3 | 4.4 |
2006 | 3.9 | 4.4 | 4.2 | 4.6 |
Determine the equation of a straight line which best fits the following data
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Sales (₹ '000) | 35 | 36 | 79 | 80 | 40 |
Compute the trend values for all years from 2000 to 2004
Use the method of monthly averages to find the monthly indices for the following data of production of a commodity for the years 2002, 2003 and 2004
2002 | 2003 | 2004 |
15 | 20 | 18 |
18 | 18 | 25 |
17 | 16 | 21 |
19 | 13 | 11 |
16 | 12 | 14 |
20 | 15 | 16 |
21 | 22 | 19 |
18 | 16 | 20 |
17 | 18 | 1 |
15 | 20 | 16 |
14 | 17 | 18 |
18 | 15 | 20 |
The following table shows the number of salesmen working for a certain concern:
Year | 1992 | 1993 | 1994 | 1995 | 1996 |
No. of salesman |
46 | 48 | 42 | 56 | 52 |
Use the method of least squares to fit a straight line and estimate the number of salesmen in 1997
From the following data, calculate the trend values using fourly moving averages.
Year | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
Sales | 506 | 620 | 1036 | 673 | 588 | 696 | 1116 | 738 | 663 |
Sum of n terms of series 1.3 + 3.5 + 5.7 + ______ is
Let An be the sum of the first n terms of the geometric series `704 + 704/2 + 704/4 + 704/8 + ...` and Bn be the sum of the first n terms of the geometric series `1984 - 1984/2 + 1984/4 + 1984/8 + ...` If An = Bn, then the value ofn is (where n ∈ N).
Sum of the first n terms of the series `1/2 + 3/4 + 7/8 + 15/16 +`......... is equal to: