Advertisements
Advertisements
Question
Determine the series limit of Balmer, Paschen, and Pfund series, given the limit for Lyman series is 912 Å.
Solution
Data: `lambda_("L"∞)` = 912 Å
For hydrogen spectrum, `1/lambda = "R"_"H"(1/"n"^2 - 1/"m"^2)`
∴ `1/lambda_("L"∞) = "R"_"H"(1/1^2 - 1/∞) = "R"_"H"` ...(1)
as n = 1 and m = ∞
`1/lambda_("B"∞) = "R"_"H"(1/4 - 1/∞) = "R"_"H"/4` .....(2)
as n = 2 and m = ∞
`1/lambda_("Pa"∞) = "R"_"H"(1/9 - 1/∞) = "R"_"H"/9` .....(3)
as n = 3 and m = ∞
`1/lambda_("Pf"∞) = "R"_"H"(1/25 - 1/∞) = "R"_"H"/25` ......(4)
as n = 5 and m = ∞
From Eqs. (1) and (2), we get,
`lambda_("B"∞)/lambda_("L"∞) = "R"_"H"/("R"_"H"//4) = 4`
∴ `lambda_("B"∞) = 4 lambda_("L"∞) = (4)(912)` = 3648 Å
This is the series limit of the Balmer series.
rom Eqs. (1) and (3), we get,
`lambda_("Pa"∞)/lambda_("L"∞) = "R"_"H"/("R"_"H"//9)` = 9
∴ `lambda_("Pa"∞) = 9lambda_("L"∞) = (9)(912)` = 8208 Å
This is the series limit of the Paschen series.
From Eqs. (1) and (4), we get,
`lambda_("Pf"∞)/lambda_("L"∞) = "R"_"H"/("R"_"H"//25)` = 25
∴ `lambda_("Pf"∞) = 25 lambda_("L"∞) = (25)(912)` = 22800 Å
APPEARS IN
RELATED QUESTIONS
What is the shortest wavelength present in the Paschen series of spectral lines?
An electron jumps from fourth to first orbit in an atom. How many maximum number of spectral lines can be emitted by the atom? To which series these lines correspond?
In both β− and β+ decay processes, the mass number of a nucleus remains the same, whereas the atomic number Z increases by one in β− decay and decreases by one in β+ decay. Explain giving reason.
In Balmer series, wavelength of first line is 'λ1' and in Brackett series wavelength of first line is 'λ2' then `lambda_1/lambda_2` is ______.
In the figure below, D and E respectively represent
Which of the following is TRUE?
Let v1 and v3 be the frequency for series limit of Balmer and Paschen series respectively. If the frequency of first line of Balmer series is v2 then, relation between v1 and v2 and v3 is ____________.
In hydrogen spectrum, which of the following spectral series lies in ultraviolet region?
The radii of the first four Bohr orbits of hydrogen atom are related as ____________.
In hydrogen spectrum, the series of lines obtained in the ultraviolet region of the spectrum is ____________.
If the mass of the electron is reduced to half, the Rydberg constant ______.
Each element is associated with a ______.
An electron makes a transition from orbit n = 4 to the orbit n = 2 of a hydrogen atom. What is the wave number of the emitted radiations? (R = Rydberg's constant)
To produce an emission spectrum of hydrogen it needs to be ______.
Show that the first few frequencies of light that is emitted when electrons fall to the nth level from levels higher than n, are approximate harmonics (i.e. in the ratio 1 : 2 : 3...) when n >> 1.
The first four spectral lines in the Lyman series of a H-atom are λ = 1218 Å, 1028Å, 974.3 Å and 951.4 Å. If instead of Hydrogen, we consider Deuterium, calculate the shift in the wavelength of these lines.
Determine the series limit of Balmer, Paschen and Brackett series, given the limit for Lyman series is 911.6 Å.
The first three spectral lines of H-atom in the Balmer series are given λ1, λ2, λ3 considering the Bohr atomic model, the wavelengths of the first and third spectral lines `(lambda_1/lambda_3)` are related by a factor of approximately 'x' × 10–1. The value of x, to the nearest integer, is ______.
The frequencies for series limit of Balmer and Paschen series respectively are 'v1' and 'v3'. If frequency of first line of Balmer series is 'v2' then the relation between 'v1', 'v2' and 'v3' is ______.
In the hydrogen atoms, the transition from the state n = 6 to n = 1 results in ultraviolet radiation. Infrared radiation will be obtained in the transition.
The frequency of the series limit of the Balmer series of the hydrogen atoms of Rydberg’s constant R and velocity of light c is ______.
Calculate the wavelength of the first two lines in the Balmer series of hydrogen atoms.