Advertisements
Advertisements
Question
Differentiate the following:
y = e–mx
Solution
y = e–mx
[y = f(g(x)
`("d"y)/("d"x)` = f'(g(x)) . g'(x)]
`("d"y)/("d"x) = "e"^(-"m"x) xx "d"/("d"x) (- "m"x)`
`("d"y)/("d"x) = "e"^(- "m"x) xx - "m"x`
`("d"y)/("d"x) = - "me"^(-"m"x)`
= – my
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = e-x . log x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Find the derivatives of the following:
y = `x^(cosx)`
Find the derivatives of the following:
xy = yx
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0