Advertisements
Advertisements
Question
एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए
Solution
दिया गया:
∠B = 45°
∠A = 105°
किसी त्रिभुज के सभी अंतः कोणों का योग 180° होता है।
∠A + ∠B + ∠C = 180°
105° + 45° + ∠C = 180°
∠C = 180° − 150°
∠C = 30°
आवश्यक त्रिभुज के निर्माण में निम्नलिखित चरण शामिल हैं:
चरण 1
एक ΔABC खींचिए जिसकी भुजा BC = 7 सेमी, B = 45° और C = 30° हो।
चरण 2
शीर्ष A के विपरीत दिशा में BC से न्यून कोण बनाते हुए एक किरण BX खींचिए।
चरण 3
BX पर 5 अंक (जैसे 5 और 4 में से 5 बड़ा है) B1, B2, B3, B4 और B5 इस प्रकार लगाएं कि BB1, B1B2, B2B3, B3B4 and B4B5.
चरण 4
B5C में शामिल हों। B4 से होकर B5C के समांतर एक रेखा खींचिए जो विस्तारित BC को C' पर प्रतिच्छेद करती है।
चरण 5
C' से होकर AC के समांतर एक रेखा खींचिए जो BA को A' पर काटती हो।
अभीष्ट त्रिभुज ΔA'BC' है।
औचित्य
निर्माण को सिद्ध करके उचित ठहराया जा सकता है कि
`A'B=4/5AB,BC'=4/5BC andA'C,= 4/5AC`
In ΔABC and ΔA'BC',
∠ABC = ∠A'BC' (सामान्य)
∠ACB = ∠A'C'B (सभी तरीके से)
∴ ΔABC ∼ ΔA'BC' (AA समानता मानदंड)
`(AB)/(A'B)=(BC)/(BC')=(AC)/(A'C')`
In ΔBB5C and ΔBB4C',
∠B4BC' = ∠B5BC (सामान्य)
∠BB4C' = ∠BB5C' (सभी तरीके से)
∴ ΔBB4C' ∼ ΔBB5C (AA समानता मानदंड)
`(BC')/(BC)=(BB_4)/(BB_6)`
`=>(BC')/(BC)=4/5 `
(1) और (2) की तुलना करने पर, हम प्राप्त करते हैं
`(A'B)/(AB)=(BC')/(BC)=(A'C')/(AC)=4/5`
यह निर्माण को सही ठहराता है।
APPEARS IN
RELATED QUESTIONS
7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।
5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।
आधार 8 सेमी और ऊँचाई 4 सेमी एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजा समद्विबाहु त्रिभुज की संगत भुजाओं की `1 1/2` गुणा है।निर्माण का औचित्य बताइए
एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।
एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।
एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।
एक रेखाखंड AB को 5 : 6 के अनुपात में विभाजित करने के लिए, एक किरण AX खींचिए ताकि ∠BAX एक न्यून कोण हो, फिर किरण BY किरण AX के समांतर विपरीत दिशा में खींचिए। इसके बाद AX और BY किरणों पर क्रमशः समान दूरियों पर बिंदु A1, A2, A3, ... और B1, B2, B3, ... अंकित किये जाएँ। फिर जिन बिंदुओं को मिलाया जाता है वे हैं।
लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे।
एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए।