Advertisements
Advertisements
Question
एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।
Solution
माना ΔPQR और ΔABC समरूप त्रिभुज हैं, तो संगत भुजाओं के बीच इसका स्केल फैक्टर `"PQ"/"AB" = 8/6 = 4/3` है।
निर्माण के चरण:
- एक रेखाखंड BC = 5 cm खींचिए।
- BC को P' पर मिलने वाले रेखाखंड BC का लंबवत समद्विभाजक OQ की रचना कीजिए।
- B और C को केंद्र मानकर समान त्रिज्या 6 cm के दो चाप खींचिए जो एक दूसरे को A पर काटते हैं।
- BA और CA ज्वाइन करें। तो, ΔABC अभीष्ट समद्विबाहु त्रिभुज है।
- B से न्यून कोण ∠CBX बनाती हुई कोई भी किरण BX खींचिए।
- BX पर चार बिंदु B1, B2, B3 और B4 इस प्रकार खोजें कि BB1 = B1B2 = B2B3 = B3B4।
- B3C को जोड़ें और B4 से एक रेखा खींचें B4R || B3C विस्तारित रेखा खंड BC को R पर प्रतिच्छेद करता है।
- बिंदु R से, ड्रा आरपी RP || CA, P में उत्पादित BA की बैठक।
फिर, ΔPBR अभीष्ट त्रिभुज है।
औचित्य:
∵ B4R || B3C ...(निर्माण द्वारा)
∴ `"BC"/"CR" = 3/1`
अब, `"BR"/"BC" = ("BC" + "CR")/"BC"`
= `1 + "CR"/"BC"`
= `1 + 1/3`
= `4/3`
साथ ही, RP || CA
∴ ΔABC ∼ ΔPBR
और `"PB"/"AB" = "RP"/"CA" = "BR"/"BC" = 4/3`
अत:, नया त्रिभुज दिए गए त्रिभुज के समान है जिसकी भुजाएँ समद्विबाहु ΔABC की संगत भुजाओं की `4/3` गुना हैं।
APPEARS IN
RELATED QUESTIONS
4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।
आधार 8 सेमी और ऊँचाई 4 सेमी एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजा समद्विबाहु त्रिभुज की संगत भुजाओं की `1 1/2` गुणा है।निर्माण का औचित्य बताइए
एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।
एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।
एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `8/5` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किये जाने वाले बिंदुओं की न्यूनतम संख्या है।
ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।
एक दिये हुए त्रिभुज के समरूप एक ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `7/3` हों, BC से एक न्यून कोण बनाती हुई एक किरण BX खींचिए, ताकि X भुजा BC के सापेक्ष A के विपरीत ओर स्थित हो। BX पर समान दूरियों पर बिंदु B1, B2, ...., B7, अंकित कीजिए, B3 को C से मिलाइए और फिर B3C के समांतर एक रेखाखंड B6C' खींचा जाता है, जबकि बिंदु C' बढ़ाई गयी भुजा BC पर स्थित है। अंत में, AC के समांतर रेखाखंड A'C' खींचा जाता है।
एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है?
दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं।