English

ज्यामितीय रचना से, एक दिये हुए रेखाखंड को 3:13 के अनुपात में विभाजित किया जा सकता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

स्पष्टीकरण:

प्रश्न के अनुसार,

अनुपात = `sqrt(3) : 1/sqrt(3)`

सरल करने पर हमें मिलता है,

`sqrt(3) : 1/sqrt(3) = (sqrt(3) xx sqrt(3))/1` = 3 : 1

आवश्यक अनुपात = 3 : 1

अत:, ज्यामितीय निर्माण में एक रेखाखंड को 3 : 1 के अनुपात में विभाजित करना संभव है।

shaalaa.com
रेखाखंड का विभाजन
  Is there an error in this question or solution?
Chapter 10: रचनाएँ - प्रश्नावली 10.2 [Page 117]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 10 रचनाएँ
प्रश्नावली 10.2 | Q 1. | Page 117

RELATED QUESTIONS

7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।


4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


एक त्रिभुज ABC बनाइए जिसमें BC = 6 सेमी, AB = 5 सेमी और ∠ABC = 60 हो। फिर एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ ΔABC की संगत भुजाओं की `3/4` गुनी हों। औचित्य बताइए


एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।


एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर  समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `8/5` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किये जाने वाले बिंदुओं की न्यूनतम संख्या है। 


लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे। 


एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। 


एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×