English

एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। 

Sum

Solution


निर्माण के चरण:

  1. एक रेखाखंड AB = 3 cm खींचिए।
  2. अब, एक न्यून कोण ∠ABY = 60° बनाकर एक किरण खींचिए।
  3. B को केंद्र मानकर और 5 cm त्रिज्या लेकर एक चाप लगाएं और BY पर बिंदु C को काटें।
  4. फिर से एक किरण AZ खींचिए जिससे न्यून कोण ∠ZAX' = 60° हो। ...[∴ द्वारा || AZ, ∴ ∠YBX' = ZAX' = 60°]
  5. A को केंद्र मानकर और 5 cm त्रिज्या लेकर एक चाप बनाएं और AZ पर बिंदु D काटें।
  6. अब, CD को जोड़ें और अंत में एक समांतर चतुर्भुज ABCD बनाएं।
  7. BD को मिलाएँ, जो समांतर चतुर्भुज ABCD का एक विकर्ण है।
  8. B से कोई भी किरण BX नीचे की ओर खींचिए जिससे एक न्यून कोण ∠CBX बनता है।
  9. BX पर 4 बिंदु B1, B2, B3, B4 इस प्रकार खोजें कि B1 = B1B2 = B2B3 = B3B4
  10. B4C को जोड़ें और B3C से एक रेखा खींचें B4C' || B3C विस्तारित रेखा खंड BC को C' पर प्रतिच्छेद करता है।
  11. बिंदु C' से खींचिए C'D' || CD विस्तारित रेखा खंड BD को D' पर प्रतिच्छेद करती है। फिर, AD'BC' आवश्यक त्रिभुज है जिसकी भुजाएँ ΔDBC की संगत भुजाओं की `4/3` हैं।
  12. अब DA के समानांतर एक रेखा खंड D'A' खींचें, जहां A' विस्तारित भुजा BA यानी किरण BX' पर स्थित है।
  13. अंत में, हम देखते हैं कि A'BCD' एक समांतर चतुर्भुज है जिसमें A'D' = 6.5 cm A'B = 4 cm और ∠A'BD' = 60° इसे त्रिभुज BC'D' और A'BD' में विभाजित करें विकर्ण BD।
shaalaa.com
रेखाखंड का विभाजन
  Is there an error in this question or solution?
Chapter 10: रचनाएँ - प्रश्नावली 10.4 [Page 120]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 10 रचनाएँ
प्रश्नावली 10.4 | Q 2. | Page 120

RELATED QUESTIONS

4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए


एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर  समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।


एक रेखाखंड AB को 5 : 6 के अनुपात में विभाजित करने के लिए, एक किरण AX खींचिए ताकि ∠BAX एक न्यून कोण हो, फिर किरण BY किरण AX के समांतर विपरीत दिशा में खींचिए। इसके बाद AX और BY किरणों पर क्रमशः समान दूरियों पर बिंदु A1, A2, A3, ...  और B1, B2, B3, ... अंकित किये जाएँ। फिर जिन बिंदुओं को मिलाया जाता है वे हैं।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।


ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।


लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे। 


एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है? 


एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×