Advertisements
Advertisements
Question
दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।
Solution
निर्माण के चरण:
- एक रेखाखंड AB = 5 cm खींचिए।
- ∠BAZ = 60° खींचिए।
- केंद्र A और त्रिज्या 7 cm लेकर, रेखा AZ को C पर काटते हुए एक चाप बनाएं।
- एक तीव्र ∠BAX बनाते हुए एक किरण AX खींचिए।
- AX को चार बराबर भागों में विभाजित करें, अर्थात् AA1 = A1A2 = A2A3 = A3A4।
- A4B से जुड़ें।
- ड्रा करें A3P || A4B की बैठक AB से P पर है।
- इसलिए, हम प्राप्त करते हैं, P, AB पर बिंदु इस प्रकार है कि AP = `3/4` AB है।
- इसके बाद, एक किरण AY बनाएं, जिससे वह एक न्यून कोण ∠CAY बनाए।
- AY को चार भागों में विभाजित करें, अर्थात् AB1 = B1B2 = B2B3 = B3B4।
- B4C से जुड़ें।
- ड्रा B1Q || B4C, AC से Q पर मिलता है। हम पाते हैं, Q, AC पर ऐसा बिंदु है कि AQ = `1/4` AC है।
- PQ से जुड़ें और इसे मापें।
- PQ = 3.25 cm।
APPEARS IN
RELATED QUESTIONS
आधार 8 सेमी और ऊँचाई 4 सेमी एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजा समद्विबाहु त्रिभुज की संगत भुजाओं की `1 1/2` गुणा है।निर्माण का औचित्य बताइए
एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए
एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।
एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।
एक रेखाखंड AB को 5 : 6 के अनुपात में विभाजित करने के लिए, एक किरण AX खींचिए ताकि ∠BAX एक न्यून कोण हो, फिर किरण BY किरण AX के समांतर विपरीत दिशा में खींचिए। इसके बाद AX और BY किरणों पर क्रमशः समान दूरियों पर बिंदु A1, A2, A3, ... और B1, B2, B3, ... अंकित किये जाएँ। फिर जिन बिंदुओं को मिलाया जाता है वे हैं।
एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।
एक दिये हुए त्रिभुज के समरूप एक ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `7/3` हों, BC से एक न्यून कोण बनाती हुई एक किरण BX खींचिए, ताकि X भुजा BC के सापेक्ष A के विपरीत ओर स्थित हो। BX पर समान दूरियों पर बिंदु B1, B2, ...., B7, अंकित कीजिए, B3 को C से मिलाइए और फिर B3C के समांतर एक रेखाखंड B6C' खींचा जाता है, जबकि बिंदु C' बढ़ाई गयी भुजा BC पर स्थित है। अंत में, AC के समांतर रेखाखंड A'C' खींचा जाता है।
एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है?
एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए।
एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।