हिंदी

एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। 

योग

उत्तर


निर्माण के चरण:

  1. एक रेखाखंड AB = 3 cm खींचिए।
  2. अब, एक न्यून कोण ∠ABY = 60° बनाकर एक किरण खींचिए।
  3. B को केंद्र मानकर और 5 cm त्रिज्या लेकर एक चाप लगाएं और BY पर बिंदु C को काटें।
  4. फिर से एक किरण AZ खींचिए जिससे न्यून कोण ∠ZAX' = 60° हो। ...[∴ द्वारा || AZ, ∴ ∠YBX' = ZAX' = 60°]
  5. A को केंद्र मानकर और 5 cm त्रिज्या लेकर एक चाप बनाएं और AZ पर बिंदु D काटें।
  6. अब, CD को जोड़ें और अंत में एक समांतर चतुर्भुज ABCD बनाएं।
  7. BD को मिलाएँ, जो समांतर चतुर्भुज ABCD का एक विकर्ण है।
  8. B से कोई भी किरण BX नीचे की ओर खींचिए जिससे एक न्यून कोण ∠CBX बनता है।
  9. BX पर 4 बिंदु B1, B2, B3, B4 इस प्रकार खोजें कि B1 = B1B2 = B2B3 = B3B4
  10. B4C को जोड़ें और B3C से एक रेखा खींचें B4C' || B3C विस्तारित रेखा खंड BC को C' पर प्रतिच्छेद करता है।
  11. बिंदु C' से खींचिए C'D' || CD विस्तारित रेखा खंड BD को D' पर प्रतिच्छेद करती है। फिर, AD'BC' आवश्यक त्रिभुज है जिसकी भुजाएँ ΔDBC की संगत भुजाओं की `4/3` हैं।
  12. अब DA के समानांतर एक रेखा खंड D'A' खींचें, जहां A' विस्तारित भुजा BA यानी किरण BX' पर स्थित है।
  13. अंत में, हम देखते हैं कि A'BCD' एक समांतर चतुर्भुज है जिसमें A'D' = 6.5 cm A'B = 4 cm और ∠A'BD' = 60° इसे त्रिभुज BC'D' और A'BD' में विभाजित करें विकर्ण BD।
shaalaa.com
रेखाखंड का विभाजन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: रचनाएँ - प्रश्नावली 10.4 [पृष्ठ १२०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 10 रचनाएँ
प्रश्नावली 10.4 | Q 2. | पृष्ठ १२०

संबंधित प्रश्न

7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।


4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए


ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।


लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे। 


एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।


दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।


एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।


एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×