हिंदी

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक 53 के एक त्रिभुज की रचना कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।

आकृति
योग

उत्तर


निर्माण के चरण:

  1. एक रेखाखंड BC = 6 cm खींचिए।
  2. B और C को केंद्र मानकर 4 cm और 5 cm त्रिज्या के दो चाप खींचिए जो एक दूसरे को A पर काटते हैं।
  3. BA और CA ज्वाइन करें। ∆ABC अभीष्ट त्रिभुज है।
  4. B से, न्यूनकोण बनाते हुए कोई भी किरण BX नीचे की ओर खींचिए।
  5. BX पर पांच बिंदु B1, B2, B3, B4 और B5 अंकित करें, जैसे कि BB1 = B1B2 = B2B3 = B3B4 = B4B5
  6. B3C से जुड़ें और B5 से ड्रा करें B5M || B3C विस्तारित रेखा खंड BC को M पर प्रतिच्छेद करता है।
  7. बिंदु M से खींचिए MN || CA विस्तारित रेखा खंड BA को N पर प्रतिच्छेद करता है।
    फिर, ∆NBM आवश्यक त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं के `5/3` के बराबर हैं।
    अतः, ∆NBM अभीष्ट त्रिभुज है।
shaalaa.com
रेखाखंड का विभाजन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: रचनाएँ - प्रश्नावली 10.3 [पृष्ठ ११८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 10 रचनाएँ
प्रश्नावली 10.3 | Q 3. | पृष्ठ ११८

संबंधित प्रश्न

5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


एक त्रिभुज ABC बनाइए जिसमें BC = 6 सेमी, AB = 5 सेमी और ∠ABC = 60 हो। फिर एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ ΔABC की संगत भुजाओं की `3/4` गुनी हों। औचित्य बताइए


एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए


एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `8/5` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किये जाने वाले बिंदुओं की न्यूनतम संख्या है। 


एक दिये हुए त्रिभुज के समरूप एक ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `7/3` हों, BC से एक न्यून कोण बनाती हुई एक किरण BX खींचिए, ताकि X भुजा BC के सापेक्ष A के विपरीत ओर स्थित हो। BX पर समान दूरियों पर बिंदु B1, B2, ...., B7, अंकित कीजिए, B3 को C से मिलाइए और फिर B3C के समांतर एक रेखाखंड B6C' खींचा जाता है, जबकि बिंदु C' बढ़ाई गयी भुजा BC पर स्थित है। अंत में, AC के समांतर रेखाखंड A'C' खींचा जाता है।


लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे। 


एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है? 


दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।


एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×