मराठी

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक 53 के एक त्रिभुज की रचना कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।

आकृती
बेरीज

उत्तर


निर्माण के चरण:

  1. एक रेखाखंड BC = 6 cm खींचिए।
  2. B और C को केंद्र मानकर 4 cm और 5 cm त्रिज्या के दो चाप खींचिए जो एक दूसरे को A पर काटते हैं।
  3. BA और CA ज्वाइन करें। ∆ABC अभीष्ट त्रिभुज है।
  4. B से, न्यूनकोण बनाते हुए कोई भी किरण BX नीचे की ओर खींचिए।
  5. BX पर पांच बिंदु B1, B2, B3, B4 और B5 अंकित करें, जैसे कि BB1 = B1B2 = B2B3 = B3B4 = B4B5
  6. B3C से जुड़ें और B5 से ड्रा करें B5M || B3C विस्तारित रेखा खंड BC को M पर प्रतिच्छेद करता है।
  7. बिंदु M से खींचिए MN || CA विस्तारित रेखा खंड BA को N पर प्रतिच्छेद करता है।
    फिर, ∆NBM आवश्यक त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं के `5/3` के बराबर हैं।
    अतः, ∆NBM अभीष्ट त्रिभुज है।
shaalaa.com
रेखाखंड का विभाजन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: रचनाएँ - प्रश्नावली 10.3 [पृष्ठ ११८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 10 रचनाएँ
प्रश्नावली 10.3 | Q 3. | पृष्ठ ११८

संबंधित प्रश्‍न

7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।


4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


आधार 8 सेमी और ऊँचाई 4 सेमी एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजा समद्विबाहु त्रिभुज की संगत भुजाओं की `1 1/2` गुणा है।निर्माण का औचित्य बताइए


एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।


एक रेखाखंड AB को 5 : 6 के अनुपात में विभाजित करने के लिए, एक किरण AX खींचिए ताकि ∠BAX एक न्यून कोण हो, फिर किरण BY किरण AX के समांतर विपरीत दिशा में खींचिए। इसके बाद AX और BY किरणों पर क्रमशः समान दूरियों पर बिंदु A1, A2, A3, ...  और B1, B2, B3, ... अंकित किये जाएँ। फिर जिन बिंदुओं को मिलाया जाता है वे हैं।


ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।


लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे। 


एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए। 


एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×