Advertisements
Advertisements
प्रश्न
ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
प्रश्न के अनुसार,
अनुपात = `sqrt(3) : 1/sqrt(3)`
सरल करने पर हमें मिलता है,
`sqrt(3) : 1/sqrt(3) = (sqrt(3) xx sqrt(3))/1` = 3 : 1
आवश्यक अनुपात = 3 : 1
अत:, ज्यामितीय निर्माण में एक रेखाखंड को 3 : 1 के अनुपात में विभाजित करना संभव है।
APPEARS IN
संबंधित प्रश्न
7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।
4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।
एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए
एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।
एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `8/5` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किये जाने वाले बिंदुओं की न्यूनतम संख्या है।
लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे।
एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है?
एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं।