English

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक 53 के एक त्रिभुज की रचना कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।

Diagram
Sum

Solution


निर्माण के चरण:

  1. एक रेखाखंड BC = 6 cm खींचिए।
  2. B और C को केंद्र मानकर 4 cm और 5 cm त्रिज्या के दो चाप खींचिए जो एक दूसरे को A पर काटते हैं।
  3. BA और CA ज्वाइन करें। ∆ABC अभीष्ट त्रिभुज है।
  4. B से, न्यूनकोण बनाते हुए कोई भी किरण BX नीचे की ओर खींचिए।
  5. BX पर पांच बिंदु B1, B2, B3, B4 और B5 अंकित करें, जैसे कि BB1 = B1B2 = B2B3 = B3B4 = B4B5
  6. B3C से जुड़ें और B5 से ड्रा करें B5M || B3C विस्तारित रेखा खंड BC को M पर प्रतिच्छेद करता है।
  7. बिंदु M से खींचिए MN || CA विस्तारित रेखा खंड BA को N पर प्रतिच्छेद करता है।
    फिर, ∆NBM आवश्यक त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं के `5/3` के बराबर हैं।
    अतः, ∆NBM अभीष्ट त्रिभुज है।
shaalaa.com
रेखाखंड का विभाजन
  Is there an error in this question or solution?
Chapter 10: रचनाएँ - प्रश्नावली 10.3 [Page 118]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 10 रचनाएँ
प्रश्नावली 10.3 | Q 3. | Page 118

RELATED QUESTIONS

4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


एक त्रिभुज ABC बनाइए, जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की `4/3` गुनी हों। और औचित्य बताइए


एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।


एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर  समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `8/5` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर अंकित किये जाने वाले बिंदुओं की न्यूनतम संख्या है। 


दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।


एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।


एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×