English

एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक 57 के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए। 

Diagram
Sum

Solution


निर्माण के चरण:

  1. एक रेखाखंड AB = 5 cm खींचिए।
  2. बिंदु B से ∠ABY = 60° खींचिए, जिस पर BC = 6 cm लीजिए।
  3. AC को जोड़ें, ∆ABC अभीष्ट त्रिभुज है।
  4. FA से न्यूनकोण बनाते हुए कोई किरण AX नीचे की ओर खींचिए।
  5. AX पर 7 बिंदु B1, B2, B3, B4, B5, B6 और B7 अंकित करें, जैसे कि AB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7
  6. B7B से जुड़ें और B5 से ड्रा करें B5M || B7B, AB को M पर प्रतिच्छेद करता है।
  7. बिंदु M से खींचिए MN || BC, AC को N पर प्रतिच्छेद करता है। फिर, ∆AMN आवश्यक त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं के `5/7` के बराबर हैं।

औचित्य:

यहाँ, B5M || B7B  ...(निर्माण द्वारा)

∴ `"AM"/"MB" = 5/2`

अब, `"AB"/"AM" = ("AM" + "MB")/"AM"`

= `1 + "MB"/"AM"`

= `1 + 2/5`

= `7/5`

साथ ही, MN || BC

∴ ∆AMN ∼ ∆ABC

इसलिए, `"AM"/"AB" = "AN"/"AC" = "NM"/"BC" = 5/7`

shaalaa.com
रेखाखंड का विभाजन
  Is there an error in this question or solution?
Chapter 10: रचनाएँ - प्रश्नावली 10.4 [Page 120]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 10 रचनाएँ
प्रश्नावली 10.4 | Q 5. | Page 120

RELATED QUESTIONS

4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।


5 सेमी, 6 सेमी और 7 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `7/5` हों। निर्माण का औचित्य बताइए।


एक समकोण त्रिभुज बनाइए, जिसकी भुजाएँ (कर्ण के अलावा) 4 सेमी और 3 सेमी लंबी हों। एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए गए त्रिभुज की संगत भुजाओं की `5/3` गुनी हों। निर्माण का औचित्य बताइए।


एक रेखाखंड AB को 5 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX खींचिए, ताकि ∠BAX एक न्यून कोण हो और फिर किरण AX पर  समान दूरियों पर बिंदु अंकित किये जाएँ ताकि इनकी न्यूनतम संख्या हो ______।


एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।


एक दिये हुए त्रिभुज ABC के समरूप एक ऐसा त्रिभुज बनाने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `3/7` हों, पहले एक किरण BX ऐसी खींचिए कि ∠CBX एक न्यून कोण हो और X भुजा BC के सापेक्ष A के विपरीत ओर हो। किरण BX पर अब समान दूरियों पर बिंदु B1, B2, B3, ... अंकित कीजिए तथा उसके बाद अगला चरण मिलाने का है ______।


ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।


एक दिये हुए त्रिभुज के समरूप एक ऐसे त्रिभुज की रचना करने के लिए जिसकी भुजाएँ ΔABC की संगत भुजाओं का `7/3` हों, BC से एक न्यून कोण बनाती हुई एक किरण BX खींचिए, ताकि X भुजा BC के सापेक्ष A के विपरीत ओर स्थित हो। BX पर समान दूरियों पर बिंदु B1, B2, ...., B7, अंकित कीजिए, B3 को C से मिलाइए और फिर B3C के समांतर एक रेखाखंड B6C' खींचा जाता है, जबकि बिंदु C' बढ़ाई गयी भुजा BC पर स्थित है। अंत में, AC के समांतर रेखाखंड A'C' खींचा जाता है।


दो रेखाखंडों AB और AC के बीच का कोण 60° है, जहाँ AB = 5 cm और AC = 7 cm है। AB और AC पर क्रमश : बिंदु P और Q इस प्रकार निर्धारित कीजिए कि AP = `3/4` AB और AQ = `1/4` AC हो। P और Q को मिलाइए तथा PQ की लंबाई ज्ञात कीजिए।


एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×