Advertisements
Advertisements
Question
Evaluate:
`int_0^(pi/4) (x dx)/(1+cos2x+sin2x)`
Evaluate
Solution
`int_0^(pi/4) (x dx)/(1+cos2x+sin2x)`
by using property '4' we get
`I = int_0^(pi/4) ((pi/4 - x) dx)/(1 + cos (pi/2 - 2x) + sin (pi/2 - 2x))`
`I = int_0^(pi/4) ((pi/4 - x) dx)/(1+sin 2x + cos2x)`
Now add eq (i) and (ii)
`2I = int_0^(pi/4) (pi/4)/(1+sin 2x + cos2x) dx`
`2I = pi/4 int_0^(pi/4) (dx)/(2 cos^2x + 2sinx cos2x)` ...[∴ 1 + cos 2 θ = 2 cos2 θ, sin 2 θ = 2 sin θ cos θ]
⇒ `2I = pi/8 int_0^(pi/4) (1/cos^2x)/(1+tanx)`
⇒ `I = pi/16 int_0^(pi/4) (sec^2x)/(1+tanx) dx`
Let 1 + tan x = t
sec2x dx = dt
New limit
1 + tan 0 = t ⇒ t = 1
`1 + tan pi/4t => t = 2`
⇒ `I = pi/16 int_1^2 dt/t`
⇒ `I = pi/16 |log t|_1^2`
`I = pi/16 log(2) - log(1)`
`I = pi/16 log2`
shaalaa.com
Is there an error in this question or solution?