Advertisements
Advertisements
Question
Find:
`inte^x [1/(1+x^2)^(3/2) + x/(sqrt (1+x^2))] dx`
Sum
Solution
Let we know that
`I = inte^x [1/(1+x^2)^(3/2) + x/(sqrt (1+x^2))]`
∴ ∫ex [f(x) + f'(x)] the [ex f(x) + C] is a solution
`f(x) = x/sqrt (1+x^2)`
`f'(x) = (sqrt(1+x^2) xx (1) - x xx 1/(2sqrt(1+x^2))xx2x)/((sqrt (1+x^2))^2)`
`f'(x) = (sqrt(1+x^2) - x^2/sqrt (1+x^2))/((1+x^2)`
`f'(x) = (1+x^2-x^2)/(1+x^2)^(1/(2+1)) = 1/(1+x^2)^(3/2)`
`I = (xe^x)/sqrt(1+x^2) + C`
shaalaa.com
Is there an error in this question or solution?