Advertisements
Advertisements
Question
Evaluate : `int (2"x" + 1)/(("x" + 1)("x"-2)) "dx"`
Solution
Let I = `int (2"x" + 1)/(("x" + 1)("x"-2)) "dx"`
By partial fraction
`(2"x" + 1)/(("x" + 1)("x"-2)) = "A"/("x" + 1) + "B"/("x" - 2)`
∴ 2x + 1= A (x - 2) + B(x + 1)
Put x = -1
2 (-1) + 1 = A(x - 2) + B (0)
⇒ -1 = -3 A
∴ A = `1/3`
Put x = 2
2(2) + 1 = A(O) + B(2+1)
⇒ 5 = 3 B
∴ B = `5/3`
∴ I = `int [(1/3)/("x" + 1) + (5/3)/("x" - 2)] "dx"`
`= 1/3 int 1/("x" + 1) "dx" + 5/3 int 1/("x" - 2) "dx"`
`= 1/3 "log" |"x" + 1| + 5/3 "log" |"x" - 2| + c`
APPEARS IN
RELATED QUESTIONS
evaluate : `int xcosxdx`
Evaluate :`int_0^(pi/2)dx/(1+cotx)`
If the function f is continuous at x = 2 and x = 4 then find the values of a and b.
Where f(x) = x2 + ax + b, x < 2
= 3x + 2, 2 ≤ x ≤ 4
= 2ax + 5b, 4 < x
Evaluate ; `int x^2/(x^6 - 4x^3 + 13)` dx
`int (2x + 1)/((x + 1) ( x - 2))` dx
Evaluate : `int x cosx dx`
Evaluate : `∫((1 + logx))/(x(2 + logx)(3 + logx)`dx