Advertisements
Advertisements
Question
If the function f is continuous at x = 2 and x = 4 then find the values of a and b.
Where f(x) = x2 + ax + b, x < 2
= 3x + 2, 2 ≤ x ≤ 4
= 2ax + 5b, 4 < x
Solution
Given f is continuous at x = 2
∴ `lim_(x->2^-) "f(x)" = lim_(x->2^+) "f(x)" = "f"(2)`
Consider
`lim_(x->2^-) "f(x)" = lim_(x->2^+) "f(x)"`
`=> lim_(x->2) ["x"^2 + "ax" +"b"] = lim_(x->2) ["3x + 2"]`
⇒ (2)2 + a(2) + b= 3(2) + 2
⇒ 4 + 2a + b = 6 + 2
⇒ 2a + b = 4 ....... (i)
Also f is continuous at x= 4
`therefore lim_(x->4^-) "f(x)" = lim_(x->4^+) "f(x)"`
`=> lim_(x->4) ("3x + 2") = lim_(x->4^+) ["2ax + 5b"]`
⇒ 3(4) + 2 = 2a(4) +5b
⇒ 12 + 2 = 8a + 5b
⇒ 8a + 5b = 14 .......(ii)
Solving (i) and (ii)
Multiplying equation (i) by 4 ·
8a+ 4b = 16
8a + 5b = 14
subtracting - b = 2
∴ b = -2
putting b = -2 in equation (i)
2a - 2 = 4
⇒ 2a =4 + 2
∴ a = 3